Vai al contenuto principale
Coronavirus: aggiornamenti per la comunità universitaria / Coronavirus: updates for UniTo Community
Oggetto:
Oggetto:

Metodi matematici della fisica - Introduzione

Oggetto:

Mathematical Methods in Physics - Introduction

Oggetto:

Anno accademico 2013/2014

Codice dell'attività didattica
MFN0554
Docenti
Prof. Paolo Gambino (Titolare del corso)
Prof. Mariaelena Boglione (Esercitatore)
Corso di studi
008703 Laurea in Fisica
Anno
2° anno
Periodo didattico
Secondo periodo didattico
Tipologia
B=Caratterizzante
Crediti/Valenza
6
SSD dell'attività didattica
FIS/02 - fisica teorica, modelli e metodi matematici
Modalità di erogazione
Tradizionale
Lingua di insegnamento
Italiano
Modalità di frequenza
Obbligatoria
Tipologia d'esame
Scritto ed orale
Modalità d'esame
L'esame consiste in una prova scritta, con cui viene verificata la capacità dello studente di risolvere degli esercizi sugli argomenti svolti ed una orale, in cui vengono innanzitutto commentati gli eventuali errori riscontrati nella prova scritta e quindi verificate globalmente le abilità acquisite. Lo scritto e l'orale devono essere sostenuti nella stessa sessione. Nella sessione in cui sono previsti due appelli (marzo-aprile) il primo scritto vale anche per il secondo orale; se si sostengono entrambi gli scritti viene considerato il risultato del secondo. Lo scritto deve essere svolto senza l'ausilio di libri, appunti ecc. Per sostenere l'esame occorre registrarsi tramite il sito web.
Prerequisiti
Corsi di Analisi I, II, III e Geometria I
Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

L'obiettivo del corso è quello di fornire gli strumenti di matematica avanzata indispensabili per affrontare i successivi corsi di argomento fisico concentrandosi in particolare su analisi complessa e analisi armonica e introducendo agli spazi funzionali e alle distribuzioni.

Oggetto:

Risultati dell'apprendimento attesi

Conoscenza e capacità di comprensione (knowledge and understanding)

Il corso introduce gli studenti ai concetti fondamentali di analisi complessa e analisi armonica, e alla loro applicazione per la risoluzione di integrali e di equazioni differenziali. Si tratta di strumenti indispensabili per la comprensione di argomenti avanzati in ogni campo della fisica, a partire dalla meccanica quantistica.

Capacità di applicare conoscenza e comprensione (applying knowledge and understanding)

Al termine del corso lo studente sarà in grado di risolvere integrali ed equazioni differenziali in campo complesso, effettuare sviluppi in serie di Fourier e trasformate di Fourier e Laplace. Saprà inoltre utilizzare i concetti di spazio di Hilbert e di distribuzione.

Oggetto:

Programma

In questo corso si introducono i fondamenti dell'Analisi Complessa e dell'Analisi Armonica.
Per quanto riguarda l'Analisi Complessa, si discutono i primi elementi di teoria delle funzioni analitiche, definendo l'integrazione e lo sviluppo in serie nel campo complesso, introducendo il concetto di residuo e giungendo a calcolare semplici integrali con il metodo dei residui. Vengono quindi discusse le equazioni differenziali nel campo complesso ed in particolare la loro soluzione nell'intorno di punti fuchsiani.
Nel campo dell' Analisi Armonica si introducono gli sviluppi delle funzioni periodiche in Serie di Fourier e le trasformate di Fourier e di Laplace, discutendo in particolare la loro applicazione alla soluzione di equazioni differenziali lineari; si fornisce inoltre un'introduzione elementare agli spazi di Hilbert e alla teoria delle distribuzioni.

  In this course the basic concepts of Complex Analysis and Harmonic
Analysis are introduced.
Concerning Complex Analysis, the first elements of the theory of analytic functions are discussed, defining integration and series expansion in the complex field, introducing the concept of residue and illustrating the calculation of simple integrals with the method of residues. Differential equations in the complex field are then discussed, in particular their solution in the neighborhood of Fuchs singularities.
In the framework of Harmonic Analysis, the Fourier expansion of periodic functions and the Fourier and Laplace transforms are introduced, discussing in particular their application to the solution of linear differential equations; finally an elementary introduction to Hilbert spaces and distribution theory is presented.

 

Testi consigliati e bibliografia

Oggetto:

M. B. Barbaro, M. Frau, P. Gambino, S. Sciuto, Introduzione ai Metodi Matematici della Fisica (dispense dei docenti degli ultimi anni disponibili in rete nella sezione Materiali)  

Altri testi: F.W. Byron & R. Fuller, Mathematics of classical and quantum physics, Dover;  M.L. Boas, Mathematical methods in the physical sciences, Wiley;  C. Rossetti,  Metodi Matematici della Fisica, Levrotto & Bella, Torino; Spiegel, M. R., Variabili Complesse, Collana Shaum, Etas Libri, Milano; Spiegel, M. R., Teoria ed Applicazioni dell'Analisi di Fourier, Collana Shaum, Etas Libri, Milano; Spiegel, M. R., Teoria ed Applicazioni delle Trasformate di Laplace, Collana Shaum, Etas Libri, Milano; C. Presilla, Elementi di analisi complessa, ed. Springer. 

Disponibili in rete: le ottime lezioni di Nino Zanghì, http://www.ge.infn.it/~zanghi/metodi/mm2014.html



Oggetto:

Note

Sono propedeutici a questo corso i corsi di analisi matematica del primo e del secondo anno. La frequenza al corso è fortemente consigliata.

Oggetto:
Ultimo aggiornamento: 23/07/2014 09:12