- Oggetto:
- Oggetto:
Elettricità e magnetismo
- Oggetto:
Electricity and magnetism
- Oggetto:
Anno accademico 2015/2016
- Codice dell'attività didattica
- MFN1411
- Docenti
- Prof. Andrea Chiavassa (Titolare del corso)
Prof. Alessandro Ferretti (Esercitatore) - Corso di studi
- 008703 Laurea in Fisica
- Anno
- 2° anno
- Periodo didattico
- Primo periodo didattico
- Tipologia
- A=Di base
- Crediti/Valenza
- 9
- SSD dell'attività didattica
- FIS/01 - fisica sperimentale
- Modalità di erogazione
- Doppia
- Lingua di insegnamento
- Italiano
- Modalità di frequenza
- Facoltativa
- Tipologia d'esame
- Scritto ed orale
- Prerequisiti
- Nel corso si utilizzano alcuni concetti introdotti nei corsi di Fisica del primo anno e si fa uso di strumenti di calcolo appresi nei corsi di analisi e geometria.
- Propedeutico a
- Elettromagnetismo e Ottica
- Oggetto:
Sommario insegnamento
- Oggetto:
Obiettivi formativi
Alla fine del corso uno studente e` in grado di discutere i campi elettrici e magnetici non dipendenti dal tempo, viene anche discusso il fenomeno dei campi elettrici generati da campi magnetici variabili nel tempo. Vengono forniti gli strumenti per calcolare i campi elettrici generati da distribuzioni di carica e quelli magnetici da correnti. Si ricavano le equazioni di Maxwell.
- Oggetto:
Risultati dell'apprendimento attesi
Le abilità finali attese consistono nella comprensione (corredata della necessaria trattazione matematica) delle leggi fondamentali dell'elettricità e del magnetismo e nella capacità di saper risolvere esercizi e problemi pertinenti a detta materia sia analiticamente sia mediante l'ausilio di strumenti informatici. Si presuppone la conoscenza della meccanica e della termodinamica in quanto diversi aspetti della prima ed alcuni della seconda entrano in gioco nella trattazione dell'elettricità e del magnetismo. Si presuppone la conoscenza del calcolo infinitesimale (funzioni di una sola variabile) nonchè familiarità nell'uso dei vettori e (secondariamente) delle matrici.
- Oggetto:
Modalità di insegnamento
Si tratta di un insegnamento di 9 CFU, ossia di 72 ore di didattica frontale. Divise tra lezioni ''teoriche'' (circa 2/3) ed esercitazioni (circa 1/3). L'insegnamento è affiancato da un tutorato settimanale. E' disponibile sul sito Moodle una versione in e-learning dell'insegnamento.
- Oggetto:
Modalità di verifica dell'apprendimento
L'esame e` formato da una prova scritta e da una prova orale.
L'esame si compone di una prova scritta e una prova orale. La prova scritta consiste solitamente in due problemi, uno relativo alla parte di elettricità e uno relativo alla parte di magnetismo. Ogni problema si divide in più parti. Per raggiungere la sufficienza si richiede di svolgere correttamente almeno un punto di ogni problema. La prova scritta è valutata con un giudizio (sufficiente, discreto, buono, ottimo). Questo giudizio deve essere considerato come la risposta alla prima domanda della prova orale, per fare un esempio se si supera la prova scritta con un giudizio sufficiente e` difficile ottenere una votazione finale maggiore di 27/30. Il superamento della prova scritta è valido per la sola sessione di esame corrente, tranne per lo scritto della sessione estiva (giugno/luglio) che e` valido per la sessione orale di Settembre. Nella sola sessione invernale (dicembre) sono previste due prove scritte e due prove orali. Superando lo scritto alla prima prova si puo` sostenere l'orale sia alla prima che alla seconda sessione orale. Se si vuole provare a migliorare il risultato ottenuto nella prima prova scritta ci si puo` presentare alla seconda prova scritta. Il risultato ottenuto nella prima prova scritta viene cancellato nel momento in cui si consegna il compito. Se ci si presenta alla seconda prova scritta e non si consegna il compito resta valido il risultato della prima prova.
- Oggetto:
Attività di supporto
Il corso prevede sia lezioni frontali in cui si spiegano gli argomenti del corso, che esercitazioni in cui si illustra lo svolgimento degli esercizi. Sono anche previste delle sessioni di tutoraggio in cui gli studenti vengono aiutati nel risolvere eventuali problemi.
- Oggetto:
Programma
- La legge di Gauss per il campo elettrostatico. Definizione di flusso del campo elettrostatico. Il teorema di Gauss per una carica puntiforme, generalizzazione a sistemi di più cariche. Calcolo mediante il teorema di Gauss di campi elettrici generati da distribuzioni notevoli di carica ( sferica, piana ecc.). Flusso attraverso la superficie di un volumetto infinitesimo: l’operatore divergenza. La legge di Gauss in forma differenziale: prima equazione di Maxwell per il campo elettrostatico
- Il lavoro del campo elettrostatico. Conservativitá del campo elettrostatico generato da una carica puntiforme; circuitazione del campo elettrostatico. Energia potenziale e potenziale elettrostatico generato da carica puntiforme; unitá di misura. Estensione al caso di distribuzioni di cariche; energia potenziale di un sistema di cariche. Il campo elettrostatico come gradiente del potenziale. Calcolo del potenziale e del campo elettrostatico generato da distribuzioni di carica discrete e continue; esempi. Il dipolo elettrico; campo e potenziale generati da un dipolo elettrico; momenti meccanici e forze agenti su un dipolo immerso in campo elettrico. Calcolo approssimato del potenziale generato da una distribuzione di cariche: approssimazione di dipolo e sviluppo in serie di multipoli (cenni). Circuitazione di un campo lungo un percorso chiuso infinitesimo: l’operatore rotore ed il teorema di Stokes; la seconda equazione di Maxwell per il campo elettrostatico. Equazioni di Laplace e Poisson.
- Elettrostatica dei dielettrici La polarizzazione nei dielettrici (deformazione ed orientamento): il vettore polarizzazione. Dielettrici lineari: la suscettivitá elettrica; relazione tra polarizzazione e campo elettrico. Densità di carica di polarizzazione superficiali e volumiche e loro legame col vettore polarizzazione. Il vettore induzione elettrica e la sua divergenza; dimostrazione che nei dielettrici lineari ed omogenei la densità di carica volumica di polarizzazione è nulla. Proprietà di continuità delle componenti dei vettori campo elettrico ed induzione elettrica sulle superfici di separazione tra dieletrici. Esempi di calcolo del campo elettrico in dielettrici con diverse geometrie. Equazioni dell’elettrostatica ed energia elettrostatica nei dielettrici.
- La corrente elettrica. I portatori di carica nei diversi tipi di conduttori; la velocità di deriva e la velocità di agitazione termica degli elettroni nei conduttori metallici. Definizioni di intensità di corrente e di densità di corrente. L’equazione di continuità della corrente elettrica. Modello classico della conduzione nei metalli: legge di Ohm in forma microscopica e macroscopica; resistività e resistenza. Effetto Joule.Collegamento resistenze in serie e parallelo; cenni su circuiti elettrici più complessi. Circuiti RC: risposta ad un gradino di tensione. Equivalente meccanico di un circuito elettrico: natura non elettrostatica della forza elettromotrice; generatori di f.e.m.; il generatore Van De Graaf .
- Forze magnetiche e campo magnetico Primi fatti sperimentali sulla interazione tra magneti. Relazioni tra fenomeni elettrici e magnetici: esperimenti di Oersted e Ampere. Il campo magnetico: linee di campo, legge di Gauss per il campo magnetico; legge di Gauss in forma differenziale, prima equazione di Maxwell per il campo magnetostatico. La forza di Lorentz e sue proprietà; moto di particelle cariche in campo magnetico ed esempi (ciclotrone, spettrometri magnetici, effetto Hall). Forze magnetiche su conduttori percorsi da corrente elettrica; unità di misura del campo magnetico. Momenti meccanici agenti su una spira percorsa da corrente: il momento di dipolo magnetico ed il principio di equivalenza di Ampere, energia potenziale. Flusso del campo magnetico attraverso una spira; relazione con la forza agente sulla spira e con l’energia di questa.
- Le sorgenti del campo magnetico Campo magnetico generato da un segmento infinitesimo di filo percorso da corrente: prima legge elementare di Laplace; permeabilità magnetica del vuoto. Campo magnetico generato un da filo rettilineo indefinito: la legge di Biot-Savard. Campo magnetico generato da una spira circolare; similitudine formale con il campo generato da un dipolo elettrico. Campo magnetico generato da un solenoide indefinito; parallelismo con il campo elettrico all’interno di condensatore piano indefinito. Campo magnetico generato da una particella carica in moto rettilineo uniforme. Forze tra conduttori percorsi da corrente; definizione dell’unità di misura della intensità di corrente (Ampere).Legame tra circuitazione del campo magnetico e corrente concatenata: la legge di Ampere; legge di Ampere in forma differenziale e seconda equazione di Maxwell per il campo magnetostatico.Utilizzo della legge di Ampere per il calcolo di campi magnetici; esempi (filo rettilineo, solenoide indefinito, corrente piana indefinita).Proprietà di continuità e discontinuità delle componenti del campo magnetico attraverso una superficie percorsa da corrente; parallelismo con quanto visto per il campo elettrico.
- Il campo magnetico nella materia Magnetizzazione nella materia, il vettore magnetizzazione Suscettività e permeabilità magnetica; sostanze diamagnetiche, paramegnetiche e ferromagnetiche. Le correnti amperiane di duperficie e di volume e lore relazione col vettore magnetizzazione. Il campo H e sue proprietà. Proprietà di continuità e discontinuità dei campi B ed H sulle superfici di separazione tra materiali. Confronto tra la magnetostatica nella materia e l’elettrostatica nei dielettrici. Sostanze ferromagnetiche e ciclo di isteresei
- La legge dell’induzione magnetica. L’esperimento di Faraday ed altri fatti sperimentali. La legge dell’induzione di Faraday; importanza del segno (legge di Lenz)Origine fisica della f.e.m. indotta: dimostrazione della sua riconducibilità alla forza di Lorentz nei casi in cui la spira si sta muovendo attraverso un campo magnetico costante nel tempo. Discussione del caso in cui il campo magnetico varia nel tempo. La legge di Faraday in forma differenziale, conseguenze sulle equazioni di Maxwell. Esempi ed applicazioni della legge di Faraday (generatore di correnet sinusoidale, attrito magnetico, betatrone). Flusso tra circuiti accoppiati ed autoflusso: coefficienti di mutua induzione e di autoinduzione e loro unità di misura. Il fenomeno dell’autoinduzione; relazione fra f.e.m. e variazione temporale della corrente circolante nella spira, effetti della f.e.m. indotta sulla corrente circolante. Circuiti RL: risposta ad un gradino di tensione, similitudine con i circuiti RC. Considerazioni energetiche sul transitorio del circuito RL: energia intrinseca della corrente e densità di energia del campo magnetico, similitudine con quanto visto per la carica di un condensatore e per la densità di energia del campo elettrico. Trasformazioni non relativistiche di campi elettrici e magnetici (un esempio): il campo elettromagnetico.
The Electrostatic Field and Gauss' Law.
Definition of Flux. Gauss Theorem for a point-like charge and extension to a system of charges. Applications. Gauss law in differential form, first Maxwell equation.
Work of Electrostatic Field.
Conservativity of electrotatic fields for a point-like charge. Potential energy and electrostatic potential. Relation between field and potential. Examples of calculations of potential and fields. Electric dipole. Multipole expansion. Circulation of E. The curl operator. Second Maxwell Equation. Laplace and Poisson equations.
Electrostatic in Dielectrics
Polarization of dielectrics, the polarization vector. Releation between polarization and electric field. Density of polarization charges and relation with the polarization vector. The D field. Continuity of D and E at the boundary between dielectrics . Examples of calculation of E in dieletrctrics. Electrostatic energy in dielectrics.
Electric Current
Charge carriers in different types of conductors. Drift velocity and thermal velocity. Current density and current intensity. Continuity equation. Classic model of conduction in metals. Ohm's law in microscopic and macroscopic terms. Resistivity and resistance. Joule effect. Resistors in series and parallel, solution of simple circuits. RC circuits. E.m.f and emf generators. The Van De Graaf generator.
Magnetic Force and Magnetic Field
Experimental facts about interaction between magnets. The B field and its field lines. Gauss law for the B field. Third Maxwell equation. Lorentz force. Motion of charged particles in magnetic fields. Applications: mass spectrometer, cyclotron, Hall effect. Magnetic forces on current conductors.Units of measure. Mechanical moments on a loop. Magnetic dipole moment and forces on a dipole. Ampere's equivalence principle and potential energy. Magnetic flux.
Sources of Magnetic Field
Magnetic field generated by an infinitesimal piece of wire, first elementary law of Laplace. Magnetic field generated by an infinite wire, Biot and Savart's law. Magnetic field generated by a current loop. Forces between conductors carrying currents. Definition of Ampere. Circulation of B and Ampere's law. Applications of Ampere's law. Applications. Continuity of B at boundary crossings.
Magnetic Field in Matter
Magnetization of matter and the magnetization field. Magnetic suscettivity and permeability, diamagnetism, paramagnetism, ferromagnetism. Ampere's surface currents, relation with magnetization vector. The H field and its properties. Continuity of B and H at boundaries. Ferromagnetic substances and hysteresys cycles.
The magnetic induction law
Faraday's early experiments and Faraday's law. Lenz law. Physical origin of the induced e.m.f. Faraday's law in differential form. Applications of Faraday's law (generator, betatron, magnetic friction). Flux between coupled circuits, self induction and mutual induction. RL circtuits.
- La legge di Gauss per il campo elettrostatico. Definizione di flusso del campo elettrostatico. Il teorema di Gauss per una carica puntiforme, generalizzazione a sistemi di più cariche. Calcolo mediante il teorema di Gauss di campi elettrici generati da distribuzioni notevoli di carica ( sferica, piana ecc.). Flusso attraverso la superficie di un volumetto infinitesimo: l’operatore divergenza. La legge di Gauss in forma differenziale: prima equazione di Maxwell per il campo elettrostatico
Testi consigliati e bibliografia
- Oggetto:
Mazzold, Nigro, Voci "Fisica Volume 2" Edizioni Edises
- Oggetto:
Orario lezioni
Giorni Ore Aula Lezioni: dal 22/09/2015 al 20/11/2015 Nota: Orario visualizzabile alla sezione "Orario lezioni"
- Oggetto: