Vai al contenuto principale
Coronavirus: aggiornamenti per la comunità universitaria / Coronavirus: updates for UniTo Community
Oggetto:
Oggetto:

Fisica 2 (corso B)

Oggetto:

Physics 2

Oggetto:

Anno accademico 2022/2023

Codice attività didattica
FIS0109
Docenti
Prof. Massimo Masera (Titolare del corso)
Prof. Alessandro Ferretti (Titolare del corso)
Corso di studio
008703 Laurea in Fisica
Anno
2° anno
Periodo
Primo semestre
Tipologia
A=Di base
Crediti/Valenza
10
SSD attività didattica
FIS/01 - fisica sperimentale
Erogazione
Mista
Lingua
Italiano
Frequenza
Facoltativa
Tipologia esame
Scritto ed orale
Tipologia unità didattica
corso
Prerequisiti
Una buona conoscenza del contenuto dei corsi di Meccanica, Onde, Fluidi e Termodinamica, Analisi I e Geometria e' condizione necessaria per una corretta e completa comprensione del corso. In particolare, si presuppone una conoscenza introduttiva della meccanica e della termodinamica, degli elementi introduttivi del calcolo differenziale e integrale, dell'algebra e dell'analisi vettoriale, dell'algebra delle matrici.

Good familiarity with the main contents of first year courses Meccanica, Onde,Fluidi e Termodinamica, Analisi I, Geometria is required in order to properly understand this course.
Propedeutico a
Elettromagnetismo e Ottica
Electromagnetism and Optics
Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

Comprensione concettuale e quantitativa, inclusa la risoluzione di problemi, dei seguenti argomenti: Campo elettrostatico nel vuoto e nella materia - Corrente continua  e  circuiti in continua - Campo magnetostatico nel vuoto e nella materia - Induzione elettromagnetica -  - Corrente di spostamento ed equazioni di Maxwell.

Topics covered, including conceptual understanding, mathematical formalism  and problem solving ability: Electrostatic field in vacuum  - Conductors and dielectrics - DC current  and circuits  - Magnetostatic field in vacuum - Magnetic materials - Electromagnetic induction -  Displacement current and Maxwell equations   

 

Oggetto:

Risultati dell'apprendimento attesi

Conoscenza e capacità di comprensione

Comprensione  delle leggi fondamentali dell'elettricità e del magnetismo incluse nel programma del corso.

Capacità di applicare conoscenza e comprensione

Capacita' di risolvere problemi calcolare grandezze fisiche e parametri relativi agli aspetti del campo elettromagnetico inclusi nel programma del corso.

Expected skills: Good understanding of the fundamentals laws of electromagnetism; proficiency in introductory problem solving.  Among prerequisites are introductory mechanics, thermodynamics, calculus, vector analysis, matrix algebra

Oggetto:

Programma

  • Campo elettrostatico. 

Carica elettrica. Legge di Coulomb. Unità di misura. Campo elettrostatico. Campo originato da distribuzioni discrete e continue di carica. Esempi

  • Legge di Gauss per il campo elettrostatico.

Flusso di un campo vettoriale, teorema di Gauss per una carica puntiforme, generalizzazione a sistemi di più cariche. Calcolo del c.elettrostatico di semplici distribuzioni di carica mediante il teorema di Gauss. Teorema della divergenza. La legge di Gauss in forma differenziale: prima equazione di Maxwell.

  • Lavoro del campo elettrostatico e integrale di linea; 

Conservativitá del campo elettrostatico generato da una carica puntiforme; energia potenziale e potenziale elettrostatico; estensione al caso di distribuzioni di cariche; energia potenziale di un sistema di cariche. Calcolo del potenziale e del campo elettrostatico generato da distribuzioni di carica discrete e continue, gradiente. Equazioni di Laplace e Poisson.  Sviluppo in serie di multipoli; approssimazione di dipolo;  potenziale e campo di dipolo;azioni meccaniche sui dipoli.  Teorema di Stokes; seconda equazione di Maxwell.

  • Conduttori

Cariche libere, tipi di conduttori Proprieta' elettrostatiche dei conduttori Conduttori cavi, schermo elettrostatico Problema generale dell'elettrostatica in presenza di conduttori Induzione elettrostatica Capacita' Condensatori Energia elettrostatica

  • Dielettrici 

Polarizzazione: deformazione ed orientamento.   Dielettrici lineari:  suscettivitá , relazione tra P ed E; Densità di carica di polarizzazione superficiali e volumiche. D, P ed E. Continuità e discontinuita'  delle componenti di D ed E all'interfaccia  tra dielettrici. Equazioni dell'elettrostatica ed energia elettrostatica nei dielettrici. 

  • Corrente elettrica.  

Elettroni liberi nei metalli. Velocità di deriva e agitazione termica. Corrente e densità di corrente, equazione di continuità e conservazione della carica. Modello classico della conduzione nei metalli, legge di Ohm in forma microscopica e macroscopica,  resistenza, effetto Joule. Resistenze in serie e parallelo, forza elettromotrice e sua  natura non elettrostatica, generatori, circuiti in CC, leggi di Kirchoff

  • Campo magnetico 

Interazione tra magneti.Forze magnetiche. Relazioni tra correnti e forze magnetiche. Campo magnetico:  legge di Gauss,assenza di cariche magnetiche, forma differenziale. Prima equazione di Maxwell per il campo magnetico. Forza di Lorentz.  Moto di particelle cariche nel campo magnetico, esempi. Forze magnetiche sulle correnti.  Momento di dipolo magnetico, principio di equivalenza di Ampere, azioni meccaniche su una spira percorsa da corrente immersa in un campo esterno . Flusso del campo magnetico attraverso una spira; relazione con la forza agente sulla spira e con l'energia di questa. 

  • Sorgenti del campo magnetico 

Prima legge elementare di Laplace  Legge di Biot-Savart Campo di una spira circolare; analogia con il c. elettrico di un dipolo elettrico. Solenoide indefinito Campo generato da una particella carica in moto rettilineo uniforme Forze tra conduttori percorsi da corrente  Legge di Ampere  Forma differenziale e seconda equazione di Maxwell per il campo magnetostatico Calcolo del c. magnetico da semplici distribuzioni di corrente con la legge di Ampere 

  • Induzione elettromagnetica.

Legge dell'induzione di Faraday-Neumann-Lenz  Origine fisica della f.e.m. indotta:  forza di Lorentz, flusso variabile Forma differenziale Terza equazione di Maxwell Applicazioni  Circuiti accoppiati Coefficienti di mutua e autoinduzione  Relazione fra f.e.m. e variazione temporale della corrente circolante nella spira, effetti della f.e.m. indotta sulla corrente circolante. Circuiti RL. Considerazioni energetiche  Trasformazioni non relativistiche di campi elettrici e magnetici

  • Campo magnetico nella materia

Magnetizzazione, suscettivita', permeabilita'magnetica Diamagnetismo Paramagnetismo Correnti amperiane di superficie e di volume Campo H Continuita' e discontinuita' di B e  H all'interfaccia fra due mezzi Ferromagnetismo , ciclo di isteresi, magnetizzazione permanente

  • Corrente di spostamento.

Inconsistenza della legge di Ampere per campi variabili - Conservazione della carica - Termine di spostamento - Equazioni di Maxwell in forma integrale e differenziale

 

  • Electrostatic Field

Electric charge. Coulomb law. Electrostatic field. Units. Computing the electrostatic field: Discrete and continuous charge distributions. Examples.

  • Gauss' Law.

Flux of a vector field. Gauss law for a point-like charge, extension to a system of charges.  Examples. Gauss law in differential form. First Maxwell equation.

  • Work, Electrostatic Potential.

Line integrals, Path independence.  Potential energy, electrostatic potential.   Examples. Electric dipole. Multipole expansion. Circuitation. Curl. Second Maxwell Equation. Laplace and Poisson equations.

  • Dielectrics

Polarization. Releation between P and E. Density of polarization charges. The D field. Continuity  of D and E at the boundary between dielectrics . Examples . Electrostatic energy in dielectrics.

  • Electric Current 

Free carriers in conductors. Drift and thermal velocity. Current density .  Continuity equation and charge conservation. Classic model of conduction in metals. Ohm's law. Resistance. Joule effect.  Resistors in series and parallel.Kirchoff laws. RC circuits. E.m.f and generators. 

  • Magnetic Force and Field

Interaction between magnets. B field . Gauss law  for the B field. Third Maxwell equation. Lorentz force. Motion of charged particles in magnetic fields.  Examples.  Magnetic force. Second elementary law. Magnetic dipole moment, forces and moments on a dipole. Ampere's equivalence principle. Vector Potential.  Examples. Magnetic flux.

  • Sources of Magnetic Field

Magnetic field from a current element. First elementary law.   Biot and Savart's law. Magnetic field by a current loop. Forces between currents. Circuitation of B, Ampere's law. Examples. Magnetic flux.  

  • Electromagnetic induction 

Faraday-Neumann-Lenz law. Physical origin of the induced e.m.f.. Faraday's law in different situations, origin of the flux rule. Differential form. Applications.  Flux between coupled circuits, self induction and mutual induction. RL circuits.

  • Magnetic Field in Matter

Magnetization. Magnetic suscettivity and permeability. Diamagnetism. Paramagnetism. Surface currents. The H field. Continuity of B and H at boundaries. Ferromagnetism, permanent magnetization, hysteresis cycle. 

  • Displacement current 

Ampere's law and variable fields - Charge conservation - Maxwell's displacement current - Maxwell's equations  Integral and differential form Examples

 

Oggetto:

Modalità di insegnamento

10 CFU =  80 ore di didattica frontale. Lezioni  (circa 2/3) + Esercitazioni (circa 1/3). Tutorato settimanale. 

E' prevista l'erogazione del corso in presenza

10 CFU = 80 h of lectures (roughly 2/3) + problem solving sessions (roughly 1/3). Weekly sessions of student assistance.

Lectures and problem solving sessions will be kept in classroom.

Oggetto:

Modalità di verifica dell'apprendimento

Prova scritta + Prova orale. Prova scritta: 3 problemi, ognuno con alcune domande Valutazione in trentesimi. 

Il superamento della prova scritta è valido per la sola sessione di esame corrente; nel caso la sessione preveda due appelli, superando lo scritto al primo appello si può sostenere l'orale sia al primo che al secondo appello orale. Se si vuole provare a migliorare il risultato ottenuto nella prima prova scritta ci si puo`presentare alla seconda prova scritta; il risultato ottenuto nella prima prova scritta viene cancellato nel momento in cui si consegna il compito della seconda, mentre se ci si presenta alla seconda prova scritta e non si consegna il compito resta valido il risultato della prima.

Esame orale: circa 30 minuti di domande alla lavagna su tutto il programma.

Written exam: 3 problems, each one 2-3 questions  Positive grading ( between 18/30 and 30/30) of written exam  is required to be admitted to oral exam - A positive written exam must be followed by oral exam within the same exam session 

Oral exam: about 30' of blackboard questions on the whole subject, including examples and proofs

Oggetto:

Attività di supporto

Sessioni di tutoraggio settimanali, per supporto alla risoluzione dei problemi e spiegazioni aggiuntive sugli argomenti trattati

Weekly sessions of student assistance,focusing on problem solving and further help in understanding varius course topics

Testi consigliati e bibliografia

Oggetto:

Oltre al testo 'storico', usato da molti anni: 

Mazzoldi, Nigro, Voci "Fisica Volume 2" ,  Edises

viene consigliato un testo altrettanto rigoroso e completo, piu' stringato e conciso e quindi piu' adatto a corsi 'compattati': 

Bettini "Elettromagnetismo",Decibel-Zanichelli

Va bene anche il testo

Mencuccini - Silvestrini "Elettromagnetismo e ottica" CEA

Either

Mazzoldi,Nigro,Voci  "Fisica Vol 2", Edises
or

Bettini "Elettromagnetismo", Decibel-Zanichelli

or Mencuccini - Silvestrini "Elettromagnetismo e ottica" CEA



Oggetto:

Note

Studenti con la prima lettera del cognome compresa da L a Z

Students with the first letter of the surname from L to Z

Registrazione
  • Aperta
    Oggetto:
    Ultimo aggiornamento: 27/06/2022 13:52
    Non cliccare qui!