Vai al contenuto principale
Oggetto:
Oggetto:

Applicazioni di elettromagnetismo

Oggetto:

Electromagnetism applications

Oggetto:

Anno accademico 2015/2016

Codice dell'attività didattica
MFN0857
Docente
Prof. Elena Botta (Titolare del corso)
Corso di studi
008510-101 Laurea Magistrale in Fisica ind. Fisica Nucleare e Subnucleare e Biomedica
008510-103 Laurea Magistrale in Fisica ind. Fisica dell'Ambiente e delle Tecnologie Avanzate
008510-104 Laurea Magistrale in Fisica ind. Fisica delle Tecnologie Avanzate
008510-105 Laurea Magistrale in Fisica ind. Fisica Generale
Anno
2° anno
Periodo didattico
Primo periodo didattico
Tipologia
C=Affine o integrativo
Crediti/Valenza
6
SSD dell'attività didattica
FIS/01 - fisica sperimentale
Modalità di erogazione
Tradizionale
Lingua di insegnamento
Italiano
Modalità di frequenza
Obbligatoria
Tipologia d'esame
Orale
Prerequisiti
Il corso richiede come propedeutico un corso di Elettromagnetismo Avanzato (p. es. il corso obbligatorio di Complementi di Elettromagnetismo del secondo anno della laurea triennale) che tratti argomenti quali la soluzione generale delle equazioni di Maxwell e le cavita' risonanti; viene anche richiesto come prerequisito un corso di Meccanica Quantistica di base, ove si tratti la soluzione della eq. di Schroedinger con metodo perturbativo, e un corso di Struttura della Materia (p. es.Struttura della Materia I obbligatorio nella triennale) ove si studino le proprieta' dei gas atomici e molecolari, delle soluzioni dei semiconduttori e dei cristalli dal punto di vista dei livelli quantistici. Si consiglia anche un corso di Stato Solido. Per la parte di Luce di Sincrotrone si richiede una buona conoscenza della Relativita' Ristretta.
Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

Fornire le conoscenze di base sui principi di funzionamento di un sistema laser, sulle caratteristiche dei principali tipi di laser e sulle proprieta' della luce di sincrotrone.

Oggetto:

Risultati dell'apprendimento attesi

Conoscenza e capacita' di comprensione (knowledge and understanding)

Conoscenza dei processi di interazione tra radiazione elettromagnetica e materia ad energie dell'ordine dell' eV. Conoscenza approfondita dei principi di funzionamento di un sistema laser.  Conoscenza dei tipi di laser esistenti. Conoscenza delle proprieta' della luce di sincrotrone.

 

Capacita' di applicare conoscenza e comprensione (applying knowledge and understanding)

Capacita' di descrivere e discutere la struttura ed il funzionamento di un sistema laser. Comprensione della funzione dei risuonatori ottici passivi. Capacita' di discutere il comportamento di un laser in condizioni statiche, in regime di impulsi giganti e di agganciamento di fase dei modi. Comprensione delle applicazioni dei laser. Capacita' di spiegare le proprieta' della luce di sincrotrone e il suo utilizzo.

Oggetto:

Modalità di verifica dell'apprendimento

Il corso prevede una verifica finale orale, della durata tipica di 35-45 minuti, durante la quale viene chiesto di affrontare due-tre tematiche svolte durante le lezioni frontali, impostando il problema dal punto di vista sia fisico che matematico. La valutazione massima viene assegnata quando sia la trattazione formale che la discussione fisica degli argomenti risultano complete. Non si prevede la risoluzione di esercizi contestualmente all'interrogazione. In caso di non superamento dell'esame orale la ripetizione dello stesso puo' avvenire dopo almeno 4 settimane.

Oggetto:

Programma

 Formula di Planck per lo spettro di corpo nero, legge di Wien, legge di Stefan-Boltzman. Principi di funzionamento del laser. Interazione radiazione-materia: assorbimento, emissione stimolata, emissione spontanea. Processi di pompaggio. Risuonatori ottici passivi. Comportamento statico del laser: equazioni di bilancio; laser a tre e quattro livelli. Q-switching. Tipi di laser: a cristalli ionici, a gas, ad eccimeri, a coloranti, a semiconduttori. Applicazioni dei laser. Luce di sincrotrone: trattazione semplificata delle proprieta'. Applicazioni della luce di sincrotrone.

Planck formula for black body radiation. Laser operation principles. Interaction of matter with light: absorption, stimulated emission, spontaneous emission. Pumping processes. Passive Optical resonators. Continuous wave laser behaviour: rate equation; three and four level lasers. Q-switching. Types of laser: solid state lasers, gas lasers, eccimer lasers, dye lasers, semiconductor lasers. Laser  applications, synchrotron light: simplified treatise of properties. Synchrotron light applications.

Testi consigliati e bibliografia

Oggetto:

Sono disponibili per gli studenti gli appunti del corso, scaricabili direttamente dalla pagina Campusnet del corso.



Oggetto:

Orario lezioni

GiorniOreAula
Mercoledì14:00 - 16:00Aula Verde Dipartimento di Fisica
Giovedì16:00 - 18:00Sala Franzinetti Dipartimento di Fisica
Venerdì11:00 - 13:00Sala Franzinetti Dipartimento di Fisica
Lezioni: dal 22/09/2015 al 20/11/2015

Oggetto:

Note

Frequenza non obbligatoria ma fortemente consigliata.

Oggetto:
Ultimo aggiornamento: 23/01/2015 13:49
Location: https://fisica.campusnet.unito.it/robots.html
Non cliccare qui!