Vai al contenuto principale
Coronavirus: aggiornamenti per la comunità universitaria / Coronavirus: updates for UniTo Community
Oggetto:
Oggetto:

Analisi I B

Oggetto:

Calculus I B

Oggetto:

Anno accademico 2013/2014

Codice dell'attività didattica
MFN0520
Docenti
Prof. Anna Capietto (Titolare del corso)
Ubertino Battisti (Titolare del corso)
Corso di studi
008703 Laurea in Fisica
Anno
1° anno
Periodo didattico
Primo periodo didattico
Tipologia
A=Di base
Crediti/Valenza
9
SSD dell'attività didattica
MAT/05 - analisi matematica
Modalità di erogazione
Tradizionale
Lingua di insegnamento
Italiano
Modalità di frequenza
Facoltativa
Tipologia d'esame
Scritto ed orale
Modalità d'esame
Scritto ed orale
Prerequisiti
I contenuti del precorso di matematica
Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

Il corso intende fornire gli elementi fondamentali dell'analisi matematica per funzioni di una variabile reale necessari per la comprensione delle principali discipline scientifiche, con particolare attenzione alle scienze fisiche.

Oggetto:

Risultati dell'apprendimento attesi

Conoscenza e capacita' di comprensione (knowledge and understanding)
Al termine del corso gli studenti dovranno dimostrare di padroneggiare con discreta sicurezza gli elementi fondamentali del calcolo infinitesimale, differenziale ed integrale per funzioni di una variabile reale. 

Capacita' di applicare conoscenza e comprensione (applying knowledge and understanding)
Al termine del corso gli studenti dovranno essere in grado di risolvere esercizi e problemi di calcolo infinitesimale, differenziale ed integrale per funzioni di una variabile reale. E' inoltre richiesta la capacità di esporre e discutere gli argomenti studiati durante il corso e di dimostrare i teoremi più significativi.

Oggetto:

Modalità di verifica dell'apprendimento

L'esame è costituito da una prova scritta e da una prova orale.

Oggetto:

Attività di supporto

Tutorato durante il periodo delle lezioni. Consultare anche il materiale didattico degli anni accademici precedenti.

Oggetto:

Contenuti

Il programma del corso.

Oggetto:

Programma

 

Principi elementari di logica.Calcolo delle proposizioni e uso dei quantificatori. Numeri reali.Concetto di funzione e funzioni elementari.Limiti di successioni e di funzioni.Continuità puntuale e su intervalli.Derivate e teoremi del calcolo differenziale.Massimi e minimi.Studio di funzioni.Formula di Taylor.Calcolo integrale:primitive,integrali definiti,Teorema Fondamentale del Calcolo.Integrali impropri:criteri di convergenza.Numeri complessi.Equazioni differenziali del I ordine:metodi risolutivi per equazioni lineari e a variabili separabili.Equazioni differenziali lineari del II ordine a coefficienti costanti.Problemi ai valori iniziali.

Elementary logic concepts. Propositional calculus and quantifiers. Real  numbers. The notion of function and elementary functions.Limits of sequences and of functions.Pointwise continuity and continuity in intervals. Derivatives and differential calculus theorems.Maxima and minima.Graphs of functions.Taylor formula.Integral calculus: primitives, definite integrals, Fundamental theorem of calculus.Improper integrals: convergence criteria.Complex numbers.First order differential equations: solvability of linear equations and of equations with separable variables.Second order linear differential equations with constant coefficients. Initial value problems.

Testi consigliati e bibliografia

Oggetto:

Libro di testo: M.Conti, D. Ferrario, S. Terracini, G. Verzini, Analisi Matematica - Dal calcolo all'analisi - Vol.1, Apogeo.



Oggetto:

Note

Propedeuticita' consigliate: precorso di matematica. Modalita' di frequenza: non obbligatoria (ma consigliata). Informazioni e materiale relativo al corso si trovano sulla pagina personale della docente: http://www.personalweb.unito.it/anna.capietto/

 

Oggetto:

Altre informazioni

http://www.personalweb.unito.it/anna.capietto/AnalisiUno1011.html
Oggetto:
Ultimo aggiornamento: 23/07/2014 09:12