- Oggetto:
- Oggetto:
Geometria e Algebra Lineare I B
- Oggetto:
Geometry and Linear Algebra I B
- Oggetto:
Anno accademico 2021/2022
- Codice dell'attività didattica
- MFN1308
- Docente
- Tommaso Pacini (Titolare del corso)
- Corso di studi
- 008703 Laurea in Fisica
- Anno
- 1° anno
- Periodo didattico
- Da definire
- Tipologia
- A=Di base
- Crediti/Valenza
- 9
- SSD dell'attività didattica
- MAT/03 - geometria
- Modalità di erogazione
- Mista
- Lingua di insegnamento
- Italiano
- Modalità di frequenza
- Facoltativa
- Tipologia d'esame
- Scritto ed orale
- Prerequisiti
-
Nessuno in particolare, è sufficiente la conoscenza degli argomenti di matematica svolti nelle Scuole Secondarie Superiori. Si consiglia di frequentare il Precorso di Geometria.None in particular, it suffices to know those topics taught at high school. It is suggested to attend the preparatory course of Geometry.
- Propedeutico a
-
Tutti gli insegnamenti del secondo periodo didattico
All courses in the second lecture period. - Oggetto:
Sommario insegnamento
- Oggetto:
Obiettivi formativi
Il corso si propone di fornire le nozioni fondamentali dell'algebra lineare e del calcolo vettoriale, necessarie per la comprensione delle principali discipline scientifiche, con particolare attenzione alle scienze fisiche.
Conoscenza e capacità di comprensione (knowledge and understanding). L'insegnamento ha lo scopo di introdurre gli strumenti fondamentali della Geometria e dell'Algebra Lineare, che saranno poi utilizzati in buona parte degli studi successivi. In particolare vengono presentati alcuni concetti fondamentali dell'algebra lineare e alcune strutture algebriche. Lo strumento di verifica è costituito da una o piu' prove scritte e da una prova orale. Le prove scritte sono ritenute una parte fondamentale dell'esame e lo studente può accedere alla prova orale (da sostenersi nella stessa sessione d'esame della prova scritta) solo se queste sono risultate sufficienti.
Capacità di applicare conoscenza e comprensione (applying knowledge and understanding). La struttura teorica dell'insegnamento consiste nello sviluppo degli argomenti indicati nel programma, mediante una serie di teoremi con relative dimostrazioni, affiancate da esempi significativi ed esercizi. La verifica degli obiettivi avviene richiedendo allo studente di svolgere una o piu' prove scritte costituite non solo da esercizi di tipo standard, che permettono la verifica che lo studente abbia acquisito e consolidato le tecniche di calcolo insegnate, ma anche dalla risoluzione di problemi nuovi, che richiedono piccole dimostrazioni rigorose di risultati matematici non identiche a quelle già conosciute ma ispirate a esse in modo rilevante. In tale modo lo studente può dimostrare autonomia di ragionamento e successivamente potrà discutere, in sede di orale, gli aspetti teorici utilizzati.
The course covers basic linear algebra and vector calculus, necessary for understanding the physical sciences and other disciplines.
Knowledge and understanding
The teaching is aimed at introducing the fundamental tools of Geometry and Linear Algebra, which will be used in the majority of the following courses. In particular some fundamental concepts of Linear Algebra and some algebraic units are presented. The examination instrument consists of one or more written tests and one oral test. The written tests are considered a fundamental part of the exam and the student can attend the oral test (which has to be attended within the same Examination Period as the written part) only if the former have been sufficient.
Applying knowledge and understanding
The theoretical framework of the course consists in the development of the programme by means of a series of theorems and their respective proofs, in parallel with important examples and exercises. The objectives are verified by requiring students to take one or more written exams consisting not just of standard exercises to test the assimilation of techniques that have been taught, but also of problems involving short rigorous proofs of results similar but not identical to ones from lectures. In this way, the students learn to reason on their own, and can discuss the theory they have used during the oral exam.
- Oggetto:
Risultati dell'apprendimento attesi
La capacità di applicare a problematiche standard le tecniche insegnate e la capacità di risoluzione di problemi nuovi, che richiedono piccole dimostrazioni rigorose di risultati matematici non identiche a quelle già conosciute ma ispirate a esse in modo rilevante.
The capacity to apply techniques acquired during the course to both standard questions and new problems that call for rigorous justification of relevant mathematical results, not necessarily already treated in the lectures.
- Oggetto:
Modalità di insegnamento
Durante l'a.a. 2021-22 le lezioni ed il tutorato avranno tendenzialmente luogo in presenza, con proiezione sincrona online. Per accedere alle lezioni bisogna iscriversi alla pagina Moodle del corso
https://elearning.unito.it/scienzedellanatura/course/view.php?id=2350
La proiezione online, riservata esclusivamente a chi ne ha diritto secondo le regole dell'Ateneo, avverrà sul sito
During the academic year 2021-22 lectures and exercise sessions will usually be held in person, and simultaneously broadcast online. To access the lectures you must enroll on the Moodle webpage
https://elearning.unito.it/scienzedellanatura/course/view.php?id=2350
The online lessons are reserved for those students who belong to specific categories determined by the University. They will take place on the website
- Oggetto:
Modalità di verifica dell'apprendimento
L'esame consiste in una o piu' prove scritte ed una orale, entrambe obbligatori, possibilmente con l'ausilio di piattaforme didattiche virtuali.
The exam consists in one or more written exams and an oral exam, both mandatory, possibly using online teaching/examination platforms.
- Oggetto:
Attività di supporto
Tutorato in presenza o virtuale, durante il periodo delle lezioni.
Classroom or online tutorials, during the lessons period.
- Oggetto:
Programma
Sistemi di equazioni lineari, teorema di Rouche'-Capelli. Determinanti. Teorema di Cramer. Calcolo vettoriale nello spazio. Matrici ad elementi reali: somma, prodotto per uno scalare, prodotto. Inversa di una matrice. Equazioni vettoriali e matriciali. Spazi vettoriali e sottospazi. Basi, dimensione, somma e somma diretta di sottospazi. Spazi vettoriali Euclidei e basi ortonormali. Applicazioni lineari tra spazi vettoriali. Autovalori e autovettori di un endomorfismo. Diagonalizzabilita' di matrici quadrate. Matrici simmetriche e teorema spettrale. Forme bilineari e forme quadratiche; classificazione, riduzione a forma canonica e a forma normale. Segnatura. Riduzione delle coniche a forma canonica.
Systems of linear equations, Theorem of Rouche'-Capelli. Determinants. Cramer's rule. Vector calculus in space. Real matrices: sums, scalar multiples, products. Inverse matrices. Vector and matrix equations. Vector spaces and subspaces. Basis, dimension, sum and direct sum of subspaces. Euclidean vector spaces and orthonormal bases. Linear maps. Eigenvalues and eingenvectors. Reduction to diagonal form. Symmetric matrices and the spectral theorem. Bilinear and quadratic forms; classification, canonical and normal form. Signature. Reduction of a conic to canonical form.
Testi consigliati e bibliografia
- Oggetto:
Testi e altro materiale didattico distribuiti online (vedi pagina Moodle)
Textbooks and other on-line teaching materials (see the Moodle page)
- Oggetto:
Note
Nessuna propedeuticità obbligatoria. Frequenza non obbligatoria, ma fortemente consigliata.
No compulsory preparation. Attendance strongly recommended not compulsory
- Oggetto: