Vai al contenuto principale
Coronavirus: aggiornamenti per la comunità universitaria / Coronavirus: updates for UniTo Community
Oggetto:
Oggetto:

Meccanica analitica e statistica (a.a. 13/14 e 14/15)

Oggetto:

Analitical and statistical mechanics

Oggetto:

Anno accademico 2014/2015

Codice dell'attività didattica
MFN0538
Docenti
Prof. Marialuisa Frau (Titolare del corso)
Prof. Carlo Angelantonj (Esercitatore)
Corso di studi
008703 Laurea in Fisica
Anno
2° anno
Periodo didattico
Terzo periodo didattico
Tipologia
C=Affine o integrativo
Crediti/Valenza
6
SSD dell'attività didattica
FIS/02 - fisica teorica, modelli e metodi matematici
Modalità di erogazione
Tradizionale
Lingua di insegnamento
Italiano
Modalità di frequenza
Facoltativa
Tipologia d'esame
Scritto ed orale
Prerequisiti
E' fortemente consigliato avere seguito e superato gli esami di Meccanica, Elettricita' e Magnetismo, Elettromagnetismo ed Ottica e Metodi Matematici della Fisica.
Propedeutico a
Meccanica Quantistica
Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

Rielaborazione dei concetti fondamentali della Meccanica Classica attraverso il formalismo Lagrangiano ed Hamiltoniano, che costituiscono il fondamento per lo sviluppo della Meccanica Quantistica e della Teoria dei Campi.

Revisione dei concetti della Relativita' Galileiana attraverso la discussione della Relativita' Ristretta di Einstein e delle sue implicazioni concettuali e sperimentali.

Oggetto:

Risultati dell'apprendimento attesi

Conoscenza e capacita' di comprensione (knowledge and understanding):

Conoscenza approfondita dei formalismi Lagrangiano ed Hamiltoniano, capacita' di determinare equazioni del moto, cariche conservate ed invarianze di sistemi di particelle puntiformi sottoposte a forze e reazioni vincolari.

Conoscenza del concetto di trasformazione canonica e di generatore infinitesimo di una trasformazione.

Conoscenza delle trasformazioni relativistiche di coordinate e di velocita', del concetto di quadrivettore, di tensore  e di invariantie relativistico.

 

Capacita' di applicare conoscenza e comprensione (applying knowledge and understanding)

Capacita' di utilizzare i formalismi Lagrangiano ed Hamiltoniano per risolvere problemi di meccanica, determinando le curve del moto dei costituenti del sistema.

Capacita' di utilizzare semplici concetti di calcolo tensoriale per risolvere problemi di relativiita' ristretta.

Oggetto:

Modalità di verifica dell'apprendimento

E' prevista una prova scritta della durata di 3 ore, durante la quale non e' possibile consultare testi o dispense o appunti. Alla prova scritta, se sufficiente, segue la prova orale.

Oggetto:

Attività di supporto

Il corso consiste di lezioni frontali ed esercitazioni; e' anche prevista un'attivita' di ulteriori esercitazioni non creditizzate al fine di rafforzare la preparazione all'esame scritto

Oggetto:

Programma

Concetti fondamentali della meccanica, principio dei lavori virtuali ed equazioni di Lagrange; principi variazionali basati sull'azione; costanti del moto e formalismo lagrangiano. Il problema dei due corpi in presenza di forze centrali, in particolare: moti Kepleriani. Il formalismo canonico, le equazioni di Hamilton, le parentesi di Poisson. Trasformazioni canoniche; la teoria di Hamilton-Jacobi, cenni sulla teoria delle piccole oscillazioni.
Concetti fondamentali della relativita' ristretta. Il principio di relativita'. Le trasformazioni di Lorentz. Contrazione delle lunghezze, dilatazione dei tempi, simultaneita' e causalita'. Addizione delle velocita'. Concetti di base del formalismo tensoriale e formulazione covariante della relativita' ristretta. Il cono-luce. Tempo proprio, quadrivelocita', quadriaccelerazione. Massa, impulso ed energia. Leggi fondamentali della meccanica nella relativita' ristretta. Formulazione relativistica delle equazioni di Maxwell.

Foundations of classical mechanics, Lagrange equations, variational principles, constants of motion and lagrangian formalism; the two-body problem with central forces: Keplerian motion. The canonical formalism, Hamilton equations, Poisson's brackets. Canonical transformations; the Hamilton-Jacoby theory, small amplitude oscillations. Foundations of special relativity: the principle of relativity and Lorentz transformations. Contraction of length and dilatation of time, sinchronisation, causality. Rule for adding velocities. Basics on tensorial formalism and covariant formulation of relativity. Ligth cone. Proper time, quadri-velocity, quadri-acceleration. Mass, momentum, energy. Fundamental laws of mechanics. Relativistic formulation of Maxwell's equations.

 

Testi consigliati e bibliografia

Oggetto:

  • D. Chandler, Introduction to Modern Statistical Mechanics, Oxford U.P. J.
  • Cardy, Scaling and Renormalization in Statistical Physics, Cambridge U.P.


Oggetto:

Note

Il corso consiste di lezioni frontali ed esercitazioni; e' anche prevista un'attivita' di ulteriori esercitazioni non creditizzate al fine di rafforzare la preparazione all'esame scritto.

Oggetto:
Ultimo aggiornamento: 16/04/2015 15:14