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Physics of the Atmosphere

Lecture 12: Conservation 
Laws in the Atmosphere (II)

Prof. Seon K. Park (Ewha Womans Univ.)

Prof. Claudio Cassardo (Univ. of Torino)
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Conservation Laws

• Why conservation laws?

• A system of governing equations includes the conservation 
of mass (air and water vapor, separately), momentum and 
energy. 

• The governing equations of a mathematical model describe 
how the values of the unknown variables (i.e., the 
dependent variables) change when one or more of the 
known (i.e., independent) variables change.
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Conservation Laws

• Governing equations are based on physical principles 
derived from the conservation of

• Mass  (Mass) Continuity Equ.  �
• Momentum  Equ. of Motion (or Momentum Equ.)  �=(�,�,�)

• Energy (1st Law of Thermodynamics)  Thermodynamic Equ. (or 
Temperature Equ.)  � or �

• Water Mass  Water Vapor Budget (Moisture) Equ.  �	 , ⋯ , ��
• Ideal Gas Law  Equ. of State (General Gas Equ.)  
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Conservation of Mass

• We exclude water vapor, for the moment.  Phase change

• Mass is neither created nor destroyed.

• The density comes in here instead of mass (mass per 
volume):

• If the density at a location increases, then the density has to be 
transferred from some other place to this location.

• Thus, the total change of density in a moving air parcel is proportional 
to the divergence of the air stream in the volume.
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Conservation of Mass

• Lagrangian view:
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 Divergence theorem

Practice: Using the divergence theorem, show that
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(velocity divergence form)

Conservation of Mass

• Lagrangian view
• Considers the mass $� moving together 

with the air flux at the internal of a material 
surface $�
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Conservation of Mass

• Lagrangian view:
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Conservation of Mass

• Lagrangian view: Summary
• Consider a mass $�, of volume $� = $($)$*, moving 

(with $� constant) with the flow
• All particles in $� enclosed by $� never abandon $�

remaining forever in $� by definition
• Thus, as $� = �$� is conserved during the motion 

(despite both � and $� can individually vary):

• Being $� = �($()/�� and so on, and taking the limit 
for $�0:
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Conservation of Mass

• Eulerian view:
• Considers the entering and leaving of mass fluxes through the surfaces 

of a cube hose wall are permeable to the air passage
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Conservation of Mass

• Eulerian view:
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Conservation of Mass

• Eulerian view: Summary
• Mass flux: / = ��
• Mass balance of a fluid volume dV with mass dM=rdV: 

• Exchanging time derivative and integral on the left side and applying 
the divergence theorem to the right side yields:

• From which:
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Conservation of Mass

• (Mass) Continuity Equation:
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Conservation of Mass

• (Mass) Continuity Equation:
• Horizontal pressure and density gradients are usually very small (but 

not in the vertical, see hydrostatic equation)

• In case of an incompressible fluid, we have +�/+� = 0 and &� = 0; thus, 
from the continuity equation: & · � = 0

• That is, the velocity field is divergence-free.

• In this case, a horizontal divergence or convergence (&1 = +�/+( +
+�/+)) is usually coincident with vertical air movement (+�/+*).
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Divergence vs. Advection

• Divergence:

• Advection:
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Conservation of Momentum

• Newton’s Laws of Motion
• The momentum of a body remains constant unless the body is acted 

upon by a net force  Conservation of Momentum

• The rate of change of momentum of a body is proportional to the net 
force acting on the body and is in the same direction of the net force 
 2 =  34

• For every net force acting on a body, there is a corresponding force of 
the same magnitude exerted by the body in the opposite direction.

34

Conservation of Momentum

• Newton’s Laws of Motion

35
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Conservation of Momentum

• Newton’s Laws of Motion
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Conservation of Momentum

• Newton’s Laws of Motion
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Conservation of Momentum

• Newton’s Laws of Motion  Equ. of Motion (Momentum Equ.)

38

{

forces absolute""
by  onaccelerati

onaccelerati lcentrifugaonaccelerati Coriolis

m
Dt

D
/)(2 FrΩΩvΩ

v


443442143421

(Malardel, 2010; ECMWF Lecture){ {

force frictional
byon accelerati

force nalgravitatio
byon accelerati

*

force grad. press.
byon accelerati

τg
F


321
p

m


 = 1/

Conservation of Momentum

• Newton’s Laws of Motion  Equ. of Motion (Momentum Equ.)

39(Malardel, 2010; ECMWF Lecture)
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Conservation of Energy

• 1st Law of Thermodynamics
• Energy is neither created nor destroyed.  Conservation of Energy

• Change in internal energy (G) is due to a combination of heat (H) 
added to the system and work done by the system (I). 

40

∆G = ∆H − ∆I

Conservation of Energy

• 1st Law of Thermodynamics

41
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Conservation of Energy

• Thermodynamic Equation:
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Conservation of Energy

• Thermodynamic Equation:
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Conservation of Energy

• Thermodynamic Equation:
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• A: Diabatic Heating
1. Sensible heating 
2. Latent heating (phase change, i.e., evaporation, condensation)
3. Radiative heating

• B: Adiabatic Effects
1. (Γd – Γ) is a measure of stability.
2. Upward motion in a stable atmosphere is a cooling process.

• C: Horizontal Advection Term
1. Often this is the largest term


