
Introduction to digital systems
design using Verilog HDL

References

� Verilog Digital System Design, Z. Navabi, McGraw-Hill, 2006

� Introduction to Digital Design Using Digilent FPGA Boards - Block

Diagram/Verilog Examples, R.E. Haskell, D.M. Hanna, LBE Books, 2009

Additional references

A lot of material in form of tutorials and YouTube videos is available on the web :

� https://www.fpga4fun.com

� https://www.nandland.com/verilog/tutorials/index.html

� http://www.asic-world.com/verilog/index.html

� https://www.youtube.com/watch?v=PybxgAroozA&app=desktop

� https://www.youtube.com/playlist?list=PLB52B8F4E464CEEF7&app=desktop

Digital systems

analog signals :

� continuous in both time and amplitude

� usually a voltage v(t) or a current i(t) as a function of time

� reach of information (e.g. frequency spectrum, FFT)

digital signals :

� usually continuous in time but discrete in amplitude

� only two possible values e.g. high/low voltage levels, true/false, on/o↵,

closed/open etc.

� less information, but more robust against noise

� can be either asynchronous signals or synchronous signals

Classification of digital circuits

Digital circuits are classified as :

� combinational circuits

� sequential circuits

� asynchronous

� synchronous

Hardware Description Languages (HDL)

COMPLEX digital system (e.g. micro-processor)

) HDL description and simulation of the system, that is... write CODE !

) a SYNTHESIS tool generates the real HARDWARE for you !

Verilog vs. VHDL

Verilog and VHDL are the two most widespread HDLs in the world for this job :

� approx. 50% market each one

� Verilog more popular in US and Japan, VHDL in Europe

� Verilog more used (and integrated with professional CAD tools) to design

Application-Specific Integrated Circuits (ASIC) design

� traditionally VHDL more used for FPGA programming instead

� both supported by Xilinx Vivado flows

� Verilog is easier to learn, but also potentially more error-prone due to its

relaxed data typing

� if you will do my job at the end you will learn both, or at least you will be able

to read both codes

� if you start alone (but I’m here ...) from scratch... learn VHDL first, then move

to Verilog once really annoyed with VHDL ”verbose” coding

� since VHDL is already used in the Digital Electronics course we will learn Verilog

Verilog HDL fundamentals

Verilog HDL

� created by P. Goel, P. Moorby, C.L. Huang and D. Warmke between late 1983 and

early 1984

� introduced by Gateway Design Automation, later purchased by Cadence Design

Systems in 1990

� born as a verification language for logic designs, at the beginning only intended

to describe and simulate digital circuits

� initially a proprietary and closed language owned by Cadence

� later released by Cadence as an open language in order to cope with the increasing

popularity of VHDL

� standardized in 1995 by IEEE (Institute for Electrical and Electronics Engineering)

as IEEE Std. 1364-1995

� second revision of the language with major extensions and new language features

in 2001, known as IEEE Std. 1364-2001

� third revision with minor changes in 2006, known as IEEE Std. 1364-2006

� finally merged as a sub-set of the SystemVerilog HDL as IEEE Std. 1800-2009

Syntax fundamentals

The Verilog HDL by purpose follows a syntax derived from the well-known
C programming language :

� Verilog is case sensitive (on the contrary, VHDL is not case sensitive)

� blanks between statements and empty lines are ignored by the compiler

� comments can be single-line or multiple-lines as in C/C++

// this is a single -line C-style comment

/*

this is a multiple -lines

C-style comment

*/

Code indentation

Always indent your code to improve readability but ...

DO NOT USE TABs !!!

Logic values and timing diagrams

The Verilog HDL natively1 provides four logic values 1, 0, X and Z :

� 1 for logic-high (true, closed, on, etc.)

� 0 for logic-low (false, open, o↵, etc.)

� X for unknown, can be either 0 or 1

� Z for the high-impedance state

Logic simulation results are visualized in form of timing diagrams, also referred

to as waveforms :

X 1 0 Z 1

1On the contrary, by default VHDL only provides the bit values 0/1 and you need to include
IEEE.std_logic_1164.all to extend logic values.

Basic net data types: wires and registers

In Verilog physical nets can be either of type wire or reg :

� wire nets are physical signals assigned using continuous assignments

� reg nets are more like variables in programming languages and are assigned
within procedural blocks such as initial and always (see later)

Declaring something as reg does not imply that a ”register”

(latch or FlipFlop) is inferred in real hardware !

Additional net types exist for special purposes (not used in the course) :

wand, wor, tri, triand, trior, supply0, supply1

Scalars, buses and endianness

Single wires are called scalar signals :

wire sum , cout ;

reg ZN ;

More wires sharing the same functionality can be grouped together to form a bus using

C-style arrays :

wire [1:0] select ;

reg [4:0] count = 5'b00000 ;

Any binary word always has a Most Significant Bit (MSB) and a Least Significant
Bit (LSB) along with a well-defined bit-ordering, called endiannes :

wire [N-1:0] be_bus ; // big -endian => MSB ... LSB

wire [0:N-1] le_bus ; // little -endian => LSB ... MSB

Slicing and concatenation

Since buses follow the syntax of C-style arrays :

� a single element of a bus can be accessed using the index in the array

e.g. wsb[3]

� two or more consecutive bits of a bus are a slice and can be accessed

using two indices in the array e.g. wsb[7:3]

Di↵erently from C/C++ programming languages, curly brackets { and } are used to

concatenate scalars or buses to build larger buses :

wire A,B ;

wire [1:0] select ;

assign select = {A,B} ; // concatenation

wire [3:0] control ;

wire [5:0] LED ;

assign LED = {A,B,control [3:0]} ; // concatenation

Numbers and radices

Buses are collections of bits that can be interpreted as numbers in some radix (base) :

busWidth 'radix <value >

Available base identifiers in Verilog are :

� 'b for base-2 i.e. binary numbers

� 'o for base-8 i.e. octal numbers

� 'd for base-10 i.e. decimal numbers

� 'h for base-16 i.e. hexadecimal numbers

Example :

wire [11:0] number ; // 12-bit bus

assign number = 12' b1010_1001_1011 ; // straight binary

assign number = 12'hA9B ; // hexadecimal

assign number = 12'o5233 ; // octal

assign number = 12'd2715 ; // decimal

Additional useful data types: integer

integer numbers :

� 32-bit signed integer

� same as int in C/C++

� synthesizable

� mainly used as iterators inside for and while loop statements

integer i ;

for(i=0 ; i<N ; i=i+1) begin

...

...

end

Implicit type casting

Verilog HDL is extremely relaxed with respect to VHDL in handling di↵erent data

types and assignments !

Example :

// this syntax compiles , however ...

reg [4:0] count = 0 ;

� count is declared as a 5-bit bus, but 0 is a 32-bit integer !

� a VHDL compiler will never accept such an assignment, while Verilog implicitly

performs a type cast for you

As a good coding practice always specify the right size to avoid unexpected results
after synthesis :

reg [4:0] count = 5'b00000 ; // or simply 5'd0

Additional useful data types: real

real numbers :

� 64 bit IEEE double-precision floating point number

� same as double in C/C++

� NOT synthesizable !

� mainly used for simulation purposes or to model A/D and D/A converters

parameter real PERIOD = 50.0 ;

reg clk = 1'b0 ;

always #(PERIOD /2.0) clk = ⇠ clk ;

time and realtime numbers :

� $time returns a 64-bit integer value for the simulation time

� $realtime returns a 64-bit real value for the simulation time

� only for simulation purposes

Modules

Any digital block implementing some functionality in Verilog is called module :

module ModuleName (

...

...) ;

...

...

endmodule

A module has I/O ports that can be declared as :

� input

� output

� inout

By default, all ports are considered of net type wire unless expilicitely declared as reg.

Testbench module

In order to simulate2 the functionality of the digital block we also need a testbench
module that generates stimuli fed to input ports of our Module Under Test (MUT),
also referred to as Device Under Test (DUT) :

module tb_ModuleName ;

...

...

// Device Under Test (DUT)

ModuleName DUT (....) ;

...

endmodule

The module under test is always instantiated inside the testbench module, which

contains non-synthesizable code.

2In semiconductor industry there is a ratio of about 10:1 between verification engineers and
HDL designers.

Lab 1 - A simple inverter

Lab 2 - Fundamental logic gates in Verilog

NOT gate

Z = X

Verilog syntax :

// continuous assignment

assign Z = ⇠ X ;

// primitive instantiation

not u1 (Z,X) ;

AND gate

Z = A ·B
Verilog syntax :

// continuous assignment

assign Z = A & B ;

// primitive instantiation

and u2 (Z,A,B) ;

OR gate

Z = A+B

Verilog syntax :

// continuous assignment

assign Z = A | B ;

// primitive instantiation

or u3 (Z,A,B) ;

NAND gate

Z = A ·B
Verilog syntax :

// continuous assignment

assign Z = ⇠(A & B) ;

// primitive instantiation

nand u4 (Z,A,B) ;

NOR gate

Z = A+B

Verilog syntax :

// continuous assignment

assign Z = ⇠(A | B) ;

// primitive instantiation

nor u5 (Z,A,B) ;

De Morgan’s theorem

A ·B = A+B

A+B = A ·B

Thanks to the De Morgan’s theorem NAND and NOR gates are promoted to universal
gates.

XOR gate

Z = A�B = (A ·B) + (A ·B)

Verilog syntax :

// continuous assignment

assign Z = A ^ B ;

// primitive instantiation

xor u6 (Z,A,B) ;

XNOR gate

Z = A�B = (A ·B) + (A ·B)

Verilog syntax :

// continuous assignment

assign Z = ⇠(A ^ B) ;

// primitive instantiation

xnor u7 (Z,A,B) ;

Lab 3 - Di↵erent coding styles
for a simple 2:1 multiplexer

Lab 4 - Example combinational blocks

