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Tendency equation

Textbooks and web sites references for this lecture:

• James R. Holton, An Introduction to Dynamic Meteorology,

Academic Press, 1992, ISBN 0-12-354355-X (§ 6.4)
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Quasi-geostrophic prediction
Characteristics of geostrophic circulation forced by vertical motions 

associated with vorticity and thermal advection can be determined 

without explicitly determining w.

Since T, zg and vg are all functions of F:



quasi-geostrophic and thermodynamic energy equations can be 

written so that they contain only one of two variables: F and w. 
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Quasi-geostrophic system
Lets define geopotential tendency cF/t: equations can be 

rewritten as:

(J=0)   



These two equations form the quasi-geostrophic system. 

First one states that vertical derivative of geopotential tendency is 

equal to sum of thickness advection and adiabatic thickness change 

owing to vertical motion. 

Second one indicates that horizontal laplaciam of geopotential 

tendency is equal to sum of vorticity advection plus vorticity 

generation by divergence effect. Purely geostrophic motion (w=0) is 

a solution only in very special situations like barotropic flows (no 

pressure dependence) or zonally symmetric flow (no x dependence).
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Geopotential tendency
Multiplying by f0

2/ first equation, differentiating with respect to pressure and 

summing second equation:

and rearranging some terms, we arrive to:

known as geopotential tendency equation. It provides a relation between the 

local change of geopotential (term A) and the distribution of vorticity (B) and 

thickness advection (C)
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Letting a similar (sinusoidal) relationship for c like that for F:

in order that:

and hypothesizing the following dependencies of  forcing terms B and C:

we can substitute in the geopotential equation, obtaining (/p neglected for 

simplicity): 

which is the equation for the vertical dependence X of c
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In mathematical terms, operator 

of equation:

spreads response in vertical so 

that forcing at one altitude 

influence other altitudes
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Large scale disturbances: 

 large wavelength Lx

 small M 

 big propagation in vertical

Forcing at a given altitude will generate a response whose vertical scale 

(measured in pressure units) is M-1.

For example, upper-level vorticity advection associated with disturbances of 

large horizontal scale (small k and l) will produce geopotential tendencies that 

extend down to the surface with little loss of amplitude, while for disturbances 

of small horizontal scale the response is confined close to the levels of forcing.
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The role of thermal advection in changing upper-level geopotential 

heigths can be simply illustrated by considering the special case 

b=0 and very large horizontal scales so that M0 and also Fv0, in 

order to approximate geopotential tendency equation in:

Integrating twice with respect to pressure: 

Using definitions of X and FT :

Thickness tendency in the column between pressure levels p and 

p0 is proportional to the vertically integrated temperature 

advection
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Term B, i.e. vorticity advection, is 

generally the main forcing term in the 

upper troposphere. For short waves, 

term B is negative in region I (upstream 

of 500 hPa trough). Since sign of 

geopotential tendency is opposite to that 

of the forcing in this case, c will be 

positive and a ridge will tend to develop.

This ridging is of course necessary for 

the development of a negative 

geostrophic vorticity.
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Similar arguments but with sign reversed apply to region II (downstream from 

500 hPa trough), where falling geopotential heigths are associated with positive 

relative vorticity advection. Note that vorticity advection term is zero along both 

trough and ridge axes since laplacian of vorticity and vg are zero. Thus, vorticity 

advection cannot change strength of this type of disturbance at the levels where 

advection is occurring, but only acts to propagate disturbances horizontally and 

spread vertically.

Grad(zg) Grad(zg)

B<0 B>0
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A                                           B                                           C

Major mechanism for amplification or decay of midlatitude synoptic 

systems is contained in term C, which involves the rate of change 

with pressure of the horizontal thickness advection.

Since -F/p is proportional to temperature, thickness advection is 

proportional to temperature advection. Thus, term C is 

proportional to minus the rate of change of temperature advection 

with respect to the pressure (i.e. rate of change versus height).

In the idealized developing wave, below 500 hPa ridge there is 

strong warm air advection associated with warm front, while 

below 500 hPa trough there is strong cold air advection 

associated with cold front. Above 500 hPa level temperature 

gradient is usually weaker and isotherms are nearly parallel to 

isolines. 
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Then, in contrast to term B, term C tends to be concentrated in 

lower troposphere. Remember that geopotential tendency response 

is not limited to the level of forcing, but it spreads in vertical, 

deepening upper-level troughs and ridges
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In the region of warm advection,                                since vg has a component 

down to temperature gradient.

As warm advection decreases with height 

(increases with pressure), the derivative

Conversely, beneath 500-hPa trough, where there is cold advection decreasing with 

height, opposite sign obtain.

Therefore, along 500 hPa trough and ridge axes where the vorticity advection is 

zero, tendency equation states that for a developing wave:
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Hence, differential temperature or 

thickness advections, even if limited to 

lower troposphere, intensifies upper-level 

troughs and ridges in a developing 

system



























F







   troughat   the   0

  ridge   at   the   0

p
v

p
gc

Relation between temperature advection

and upper-level height tendencies

0 Tvg


0 Tvg





12

Qualitatively, effects of differential temperature advection 

are easily understood since the advection of cold air into 

the air column below the 500 hPa trough reduces the 

thickness of that column and hence lowers the height of 

the 500 hPa surface unless there is a compensating rise in 

the surface pressure

Obviously, warm advection into the air column below the 

ridge has the opposite effect

Remembering that in this derivation diabatic heating has 

been assumed zero, we can summarize above results by 

stating that the horizontal temperature advection must be 

non-zero in order that a mid-latitude synoptic system 

intensify through baroclinic processes

Temperature advection patter described above indirectly 

implies conversion of potential energy to kinetic energy


