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“ ¢ The above equations are, in truth, three and are

S

—"The Navier-Stokes equations

known as Navier-Stokes Equations (NSEs)

* The NSEs (or Euler equations) are non-linear because
they are quadratic in U:

dU:ang[ar JU_%JJF(Uv)j:a—UJrZVUZ [UX(VXU)]

dt ot

* This non-linearity causes chaotic phenomena in the
atmosphere
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" NSEs in polar coordinates

< e« Earth is spherical, thus it Is convenient to
- develop a method able to represent the
equation of motions in coordinates adequate north pole
to this geometry, i.e. polar spherical
coordinates

* The polar spherical coordinates on Earth are:
* Longitude A, versor /positive in W->E direction
* Latitude ¢, versor jpositive in S=>N direction

* Quote z =r - a (heigth on the surface of the tangent
local plan), versor k positive upwards

* The relative velocity u is expressed as:

u=iu+jV+kW \/
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" NSEs in polar coordinates

* The three components u, v and w are defined by:
di do dz
Uu=rcosp—, V=r—, W=—
dt dt dt

r being the distance of point P from the center of the
Earth, and a the radius of the Earth, with r=a+z

* Being z<<a, generally itis r = a = const
* The above equations imply:

dx=rcosepdl, dy=rde
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—Velocity derivative on rotating system

* The velocity derivative of the wind vector uon a
rotating system is composed not only by the
derivative of its components (u, v and w, given by
the NSEs), but also by the time derivative of the

reference system versors:

di —du -dv dw di dj dic
—=i—+j—+hk—+u—+rv—+w—

dt dt n’r dt dt dt dt

* Let’'s analyze the time derivative of each versor,
remembering that
d 0 [z
— =—+ (u -V)
ot

dt

v Y «
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— Versor i ~

\/ di o o1 ol o
=4+

— = U—+V4—+W—
dt ,ot ox o0y 07

'

o’

* Regarding i, being |di|=oA and |ox|=a cosy oA, it is:
di oi u
—|=U —
dt

ox| acose

* Its components are:

di u Lo _ ) n'/‘_:;\m(p
— = jsinp—kcos ¢ . ®
dt acose “heose
¢
- \/ --*
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Versor j (1/2) -

* jis function only of x and y, thus gj is
composed by a gj,, (along x) and a Jj,, (y)

dy _d1% %o 9% 9
dt at OX oy 0z
* Looking at «triangle» BCD: 6x = L d¢

* But also EC = a cosg =L sing thus L=a /
tge then ox =L o = a d@p/tgyp

* Since 9j,, = 0y and 9j,, is antiparallel to i:

aloj :_tg_(ﬁi
_ OX a
= - e



Versor j (2/2) -

* Moving northwards (at constant longitude,
varying just the latitude, it is:

¢ |6.jla|=|6(p|
e Oy=ady
* Thus:
alaj :_E
oy a
* and the complete derivative is:
dj 8, 0.]  tgo: V=
8y %ed el B0 Yy
dt OX oy a a
N’ 9
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Versor k (1/2) -

* Similarly to versor j: k is function only of xand y

* Thus dk is composed by two components: dk,, (along x)
and ok, (along y)

* Moving A->B (along x, at constant longitude),
considering the «triangle» OAB, we see that: |0k| ~ oA
and 0x ~ a OA.

* Thus: ~
Ok _1:

0
= —1

OX




Versor k (2/2)

* Now, moving C-2>D (alongy, at constant lat
itude), considering the «triangle» OCD:

|0k, | ~ O
e dy=aoy
* Thus the derivative is:
\' ; alak :i_:
oy a

* Finally, the complete derivative is:

dk o,k o,k u: v-
=u +V =—i+—]

dt - ox oy a a
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" Total derivative of u

4

* The three derivatives can thus be incorporated In the

total derivative of u (slide 5):

i __ U (_j:Singp—ECOSgp)
dt acosg

dj_  We: vy

dt a a

dk u: v-=

—=—1+—]

ddt a a

dt ldt a a d a

a

du (du uvtgé uwj: (dv utgd wv
= —— +— i+ —+ +

i

'

dw u’ +v°
dt a
N -

—

K

N
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" Forces in polar coordinates

* Remembering:
dx=acosepdA, dy=ade
* Pressure gradient force

Vp 1op: lops 1op 1 8pi_1 op = 1apE

Vp_ 10p: 1ops lopp_ lop

o, pOX poy poz pacosp o4  padp” p oz
* Apparent gravitation force:

ob: 0D~ (9CD—k> B 1 8CDi 15CI)—J: 8CDE
ox oy 0z acosp oA  aop Oz

(where the first two terms can be neglected)

v Y «
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/ Thie NSEs splitted in 3 components —

“ *The complete equations can be so summarized

S

(gravitation horizontal terms have been neglected):

du_wigep w1 P ousing-Qweosp)+ T,
dt a a pacos @ oA

2
dv_utge w1 9p _2Qusin g +f,
dt a a pa op

2 2

dw _ut+vt_1op —8£+ZQUCOS(0 + 1,
dt a p oL oL
() () () (v) (V) (Vi) (vVil)

=



/ The NSEs splitted in 3 components —

e/

<+ The meaning of the terms are:

~ (1) inertial acceleration
() apparent acceleration due to curvature
(Ill)  apparent acceleration due to curvature
(IV)  pressure gradient acceleration
(V) gravitational acceleration
(VI)  Coriolis acceleration
(VII)  friction acceleration

* Terms Il and lll represent the geometric correction to the
relative acceleration in the non-inertial terrestrial system
. They do not depend on the Earth rotation

. They depend only on the curvature of the coordinate system = for this
reason, they can be neglected for synoptic motions at middle latitudes

=



W, " Classification of the NSEs

'

e The behavior of solutions of the NSEs can be classified

using dimensionless numbers:

| Vincenc Strouhal (1850-
! 1922) Czech environmental
Wl physicist

e Strouhal Number

Carl-Gustaf Arvid Rossby
(1898-1957) Swedish-born
American meteorologist

* Rossby Number

Leonhard Euler (1707-1783)
Swiss mathematician, physicist,
astronomer, geographer,
logician and engineer

e Euler Number

Osborne Reynolds FRS
(1842-1912) physicist and
fluid dynamics scientist

* Reynolds Number

4

b

U
ot

_Inertial force ‘(U V)j‘

O = — S —
Coriolis force ‘z(u XQJ

St — Inertial force
Force of movement

U = Inertial force ‘(66)3‘

~ Pressure gradient for B —
essure gradient force ‘1Vp‘
yo,

Re — Inertial force ‘(Uv)j‘ —
Frictional force ‘(K +V).E‘

= 2



“ < The Reynolds-Number

- \u\/
. [ovp _

‘(K+v AU‘ (K+v) /_K+V
|2

(I being the length scale of the system) provides an
estimate for laminar or turbulent behavior of a fluid

* Critical Reynolds humbers:
e Re_. = 50,000 for flat surfaces
e Re_.. =~ 2,300 for tubular structures

crit

crit

‘Réynolds-Number and turbulence —



v ‘Reynolds-Number and turbulence —

v _____/‘\\__’. »—-—m -
O, __,A - ’_',m -

=

(C) Re = 100



S ‘Reéynolds-Number and turbulence —
“ ¢ Typical Reynolds numbers in the atmosphere:
* Viscosity: v=0.15 cm?/s

* Typical velocity: U =5 m/s

* Typical length scale: I = 1000 m

* 2 Re = 3 108 & quite high 2> atmosphere is
governed by turbulence

=

S

* Length scale above which turbulence occurs is
v Re
| —

crit — ——L =~ 3mm
* 2 Molecular-viscous flow and dissipation of energy
Is important only at length scales below = 3 mm



w " Synoptic scale analysis -

* Scaling is a technique useful to determine whether some terms -
in the equation are negligible for motions of meteorological
concern

'

'

* Elimination of terms on scaling considerations simplify
mathematics and allows to eliminate and filter unwanted types
of motions, like sound waves

* The following scales are assumed characteristics for mid-
latitude synoptic systems

L ~ 10 m horizontal length scale (~a nation)
H ~ 10*m vertical length scale (~troposphere)
U ~ 10 m s wind speed scale
W ~ 0.0l mst vertical velocity scale
P ~ 1000 hPa (10° Pa) mean surface pressure )
Ap ~ 10 hPa (103 Pa) pressure horizontal variation scale a
Aplp = 10-2 fractional density fluctuation -
T~L/U = 10°s time scale
- \/ et

N’ A\ /



\/ " Scale analisis of horizontal NSEs

* It is possible to scale each term of each horizontal
equation using previously defined scales and the
definition of the Coriolis parameter (mid-latitude):

fob=2Qsinp,=2Q cos = 10%s! [d,=45")

'

?

du _uvtan¢+uw_ 1 0p

X —€q. ———+2Qvsin g —-2Qwcos g+ T,
dt a a 0 OX
2
y —ed. dv+u tan¢+VW=—£@—29usin¢ + 1,
dt a a p oy
2
Scales U% uoow e f,U f W QZ
a a ol L
(ms?) 10* 10° 10° 10° 10°° 10° 107"
v <

N’
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* Neglecting friction, gravitation and inertial acceleration (=stationary flow:

'

du/dt=0) in the NS equations:

%z —ZQXU—EV_IS+
dt yo,

* In cartesian coordinates (neglecting term with wj:

1op =2Qvcosp ~ fv —>V, _i@
P OX of, OX
i@:—Zﬂusingpz—fou —> U, :—i@
p oy pho Oy

—The geostrophic approximation

From Ancient Greek yew- (geé-, "earth-") + otpo@n (strophé, “a turn, bend, twist")

>u —kx—V P
P

4

where the approximation f,=2Qsing,~2Qcosy, is valid at middle latitudes (¢,~ 45°)

* This equation defines the geostrophic wind as the wind produced by the balance
between Coriolis and (horizontal) pressure gradient acceleration

* The above equation are diagnostic, hot prognostic

~’ _ \/
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\_/ " The geostrophic wind

2 low p F. /
~
g * The geostrophic wind is perpendicular
Va to the pressure gradient
highp T Fc * In the free atmosphere, approximately
. 3 km above Earth surface, the inertial,
curvature and friction accelerations are
900 mb -
/‘ / several order of magnitude lower than
w foumo—t /" (i C :
/9 5/ Coriolis and (horizontal) pressure
£ ;’C ‘vk CF oF gradient accelerations, and can be
1 2 neglected
- ° * Geostrophic wind is determined by the

distribution of the surface pressure

J N ~

of Mo
Geo OphIC Balance \ ot \/ = /
22




'~ Change of geostrophic wind —

pr Fp N’

Example: consider case where geostrophic
wind has been established

Now move to a region with smaller p-
gradient

'|1<_

\Wind speed becomes faster than during
geostrophic balance

Resulting force F, leads to an acceleration of
air parcel towards higher pressure

Direction of Fc changes
 direction of F. changes
* change in v until new steady state is reached

=100

* Similar for case of stronger p-gradient L

g
&
---

- = T

. . .
500 hPa [|[Vrmaod|-[Vgeol})/[Wgeol+100 [%] ¥Yektoren: geostrophischer Wind {weiss) Modellwind {schwarz)
Mittwoch, 21-10-2015% 00 LTC (GFS)  {Analyse) () www wetterd de

N’ - &



" The ageostrophic wind

'

-~ * Geostrophic wind exists only for ¢>10°, otherwise Coriolis
acceleration («csin @) is too weak

* This means that, near Equator, Coriolis acceleration is weak: in case of
strong minima/maxima, PGF is the largest force

« =» at Equator there are NOT large minima/maxima

* Pure geostrophic wind cannot reduce pressure gradient as
it is parallel to isobars

* In the real atmosphere, friction exists always

* Molecular friction is only important in lowest few cm of the
atmosphere, leading to the “no-slip boundary condition”

* Friction active in the troposphere is the “turbulent friction” v

v Y - . y



v —Geostrophic wind with friction —

¢ Pisa pressure force

- % ¢ Fisa ficonal forc « Assume balance of PGF, Coriolis and

P ¢ [Vis a deflecting force

L (turbulent) friction:

Ry ¢ h r”:{' Wing " — — 1 — —
s “w;«:rx ™ < 1012 mb X: _ZQXU - —Vp _I' _I' f r
t P
&
low p F . ;
P * Angle of wind velocity depends on
V

- surface friction, e.qg.:
/ * ocean: 15>-30°
-= * land: 25°-40°

\ * “rough” land: 35>-50°




w Géostrophlc equilibrium @ 700 hPa

Geostrophic approximation
is valid at 700 hPa or
higher levels

3 é\ : ‘ - .

700 hPa Hdhe GEA {gpdam)
Mi 05-06—2002 12 UTC
© 2002 Deutscher Wetterdienst
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/ "Approximate prognostic equation —

e/

<+ In these equations, acceleration term (small) is given by the
- difference between two larger terms - large errors in its
determination

=

* Measure of magnitude of acceleration (inertial force) compared
with Coriolis force is given by the Rossby nhumber Ro=U/f,L

2
inertial term Y A U

- = =Ro
Coriolisterm fU  f,L

* The physical meaning of this fact is that the geostrophic
equilibrium represents a sort of “attractor” and the deviations
from this equilibrium, produced by pressure and/or density
fluctuations, generate geostrophic re-adjustment accelerations
which are one order of magnitude lower and which guide the -
atmosphere to another geostrophic state

- N (O . y
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/ ‘Quasi-geostrophic approximation

The geostrophic wind is determined by the pressure field
It represent an idealization of the real wind, good at synoptic scale

To look at a most real situation, in which wind field evolve in time, it is
necessary to consider inertial terms:

o —-20U - Vp K
dt P,

or: —— NV=——— — +fu=---=—=

The two additional non-stationary terms with time derivatives represent
the re-adjustment between the terms of Coriolis and of pressure
gradient during the time evolution

These are the simplest prognostic equations of atmospheric motions

v Y -
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/ ‘Quasi-geostrophic approximation —

4

<+ The importance of inertial terms (accelerations) with respect to
— the Coriolis terms is expressed by the ratio between the
respective scale accelerations

* The characteristic scale for the inertial accelerations is
suggested by the advective part, and its magnitude order is
about U?%/L, U and L being, respectively, the velocity and
geometric scales

* The characteristic scale for the Coriolis term is instead f_U

* Then, the ratio between U?/L and f U, i.e. U/f L, defines a
dimensionless humber known as Rossby number, which
express the limit of validity of the geostrophic approximation

* The geostrophic approximation is better as smaller is the value
of Ro

- \_/ ~
N’ |



/ "Approximate prognostic equation —

* Retaining only the two biggest termes, it is possible to write the ~—
geostrophic balance. This allows the definition of geostrophic
wind as balance between Coriolis and pressure gradient forces:

el 1 v =kx Lvp

p OX p oy of

* However, this equation is diagnostic (no reference to time). To
obtain prediction equation it is necessary to retain also
acceleration term. The resulting approximate horizontal
equations can be written as:

du 1 0op

—

dat ‘;&Zf(v‘vg) du | fkxi=Lvp
dv 10 . o
—=—fu ———p:—f(u—ug)
dt p oy
v & v
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* By scaling the vertical equation, we arrive to:

2 2
Z —€q. dw _u”+v :—£@+2£2ucos¢+g|+|:rZ
dt a 0 07
2
Scales UW/ i AP MZ
a oH H

(ms?) 107 10° 10 10° 1010

* The biggest terms (gravity and PGF) give the hydrostatic
approximation:

1 dp, _

Po dz

) ~Scale analisis of vertical equation

e/

N



— Hydrostatic approximation

In the equation for the vertical speed component [dw/dt] of NSEs,
the dominant terms at synoptic scale are gravity and PGF

Their values are about 8 order of magnitude bigger than those of
inertial term

These two terms must thus balance each other:
10p
0 OZ

In other words, the atmospheric pressure must be, in synoptic
motions, in each point and moment, equal to the weight of the unit
air column above it

9

However this condition may not be sufficient: it is necessary to
verify that this condition remains valid even in presence, at synoptic
scale, of perturbed horizontal velocity fields — i.e. of horizontal
pressure fields at several levels

- \_/ '
N’



—~ Hydrostatic approximation

<+ To demonstrate that the condition [dw/dt<<g] is valid at synoptic
- scale, a perturbative analysis is needed

* Let’s define vertical pressure and density fields {py(z)} and {py(z)}
as horizontal averages in X, y and t at each heigth z, which satisfy
the exact hydrostatic equilibrium:

* Let’'s decompose the fields: i% ~—(
Po I
p(X, y,z,t)= p,(z)+ p'(x, Yy, z,1) p(x,y,z2,t)= p,(2)+ p'(x,y,2,t)

e ideri 101072, 1 . -p) _(m-p)_ 1, _ .:i[ _ﬁj

onsidering p/po (0o +0) (oo +PXpo—p) (05 -p")" p5 (2y=7) EA

so we get:
lep 1 ap+p) 1[p'dpo_6p']__1( . @j
- : g= - p0'g+
p 0z (/00 TP ) 0z Pol\py 0z 0Oz Lo 0z

v v



" Hydrostatic approximation

The order of magnitude of the last two termis 10"' (ms?)

This result shows that the scale accelerations associated to the two
perturbed terms of pressure and density are several order of magnitude
larger than those associated to other terms (in particular the inertial one

dw/dt) and must thus be equal and opposite
8p)=0_i(p.g+6p)
0z o 0z

1 0p 1( dp, 1(

—— 9= — P9 |——|,PIT
p oz Po\ Uz Po

Being the first bracket at right identically null, thus also the perturbed part

has the same order of magnitude than the mean field

Thus also the perturbed pressure field is in hydrostatic equilibrium, with an
approximation of 1 part on 103

This means that, at synoptic scale, the vertical accelerations are negligible
and, consequently, vertical velocities cannot be deduced by the vertical
component of NSEs, which has been substituted by static equation

- \_/ "
N’



—Isobaric coordinates: geostrophic wind -

~ * Using the positions 0p/0z =- pg and g dz = d®, geostrophic
— wind becomes:

- 1op 160D )
S = ——
of, OX fo ox |—_v.lox
L 1 op 1o >ug—k><fVCD
’ pfp oy f, oy
* and approximate equation for horizontal motions:
d—u+ fExazﬂz—V—Cﬁ
dt Yo,

* In both cases, density not appears explicitly in equations in
Isobaric coordinates, thus the geostrophic law is explicitly
independent from the height

- \_/ '
N’ |
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/ “—Isobaric coordinates: barotropy

* \Xhen isobaric surfaces are parallel (barotropic atmosphere), geostrophic
wind is constant with height

* At higher quotes density decreases and pressure gradients decrease too:
vertical pressure gradients vary with height

 However, in isobaric coordinates, as density do not appear in the equation,

distance between isobaric surfaces does not change, and vertical
geopotential gradients between isobaric surfaces are equal at all levels:

* inisobaric coordinates, iso-geopotential surfaces are not only parallel as isobaric
surfaces in geometric coordinates, but also at equal distance

py=p, ~26p

py=p, —Op

ox,

X 1

=y

N
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Jsobaric coordinates: geostrophy —

* Moreover, in the motion in which f can be considered
constant and wind is quasi geostrophic, it is:

— — — (> 1 — 1_.(_>_.

V,u, = (kxTVCDj—TV kxvcb)z%[v—q)-(%ﬁ)—i(%xv—p)]:o
where it has been used the identity:
v (AxB)=[B:(VxA)-A.(vxB)=0 and Vxk=0 VxV&=0
* The meaning of this equation is that geostrophic wind

over isobaric surfaces is a nondivergent vector, i.e. a
solenoidal vector, without sources or sinks

* This result has been obtained using isobaric coordinates
under the only hypothesis of f constant (without need of p
constant)

- \_/ '
N’ |



