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The Navier-Stokes equations

• The above equations are, in truth, three and are 
known as Navier-Stokes Equations (NSEs)

• The NSEs (or Euler equations) are non-linear because 
they are quadratic in U:

• This non-linearity causes chaotic phenomena in the 
atmosphere
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NSEs in polar coordinates

• Earth is spherical, thus it is convenient to 
develop a method able to represent the 
equation of motions in coordinates adequate 
to this geometry, i.e. polar spherical 
coordinates

• The polar spherical coordinates on Earth are:
• Longitude l, versor i positive in W→E direction

• Latitude ϕ, versor j positive in S→N direction

• Quote z = r – a (heigth on the surface of the tangent 
local plan), versor k positive upwards

• The relative velocity u is expressed as:

u = i u + j v + k w
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NSEs in polar coordinates

• The three components u, v and w are defined by:

r being the distance of point P from the center of the 
Earth, and a the radius of the Earth, with r=a+z

• Being z<<a, generally it is r = a = const

• The above equations imply:
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Velocity derivative on rotating system

• The velocity derivative of the wind vector u on a 
rotating system is composed not only by the 
derivative of its components (u, v and w, given by 
the NSEs), but also by the time derivative of the 
reference system versors:

• Let’s analyze the time derivative of each versor, 
remembering that
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Versor i

• Regarding i, being |i|=dl and |x|=a cosϕ dl , it is:

• Its components are:
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Versor j (1/2)

• j is function only of x and y, thus j is 
composed by a jlo (along x) and a jla (y)

• Looking at «triangle» BCD: dx = L dϕ

• But also EC = a cosϕ = L sinϕ thus L=a / 
tgϕ then dx = L dϕ = a dϕ/tgϕ

• Since djlo = dϕ and djlo is antiparallel to i:
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Versor j (2/2)

• Moving northwards (at constant longitude, 
varying just the latitude, it is:

• |djla|=|dϕ|

• dy=adϕ

• Thus:

• and the complete derivative is:
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Versor k (1/2)
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• Similarly to versor j: k is function only of x and y

• Thus k is composed by two components: klo (along x) 
and kla (along y)

• Moving A→B (along x, at constant longitude), 
considering the «triangle» OAB, we see that: |dk| ~ dl 
and dx ~ a dl. 

• Thus:
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Versor k (2/2)
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• Now, moving C→D (along y, at constant lat
itude), considering the «triangle» OCD:

• |dkla| ~ dϕ

• dy = a dϕ

• Thus the derivative is:

• Finally, the complete derivative is:

j
ay

kla 1
=





j
a

v
i

a

u

y

k
v

x

k
u

dt

kd lalo +=



+




=



Total derivative of u

• The three derivatives can thus be incorporated in the 
total derivative of u (slide 5):
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Forces in polar coordinates

• Remembering:

• Pressure gradient force

• Apparent gravitation force:

(where the first two terms can be neglected)
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The NSEs splitted in 3 components

• The complete equations can be so summarized 
(gravitation horizontal terms have been neglected):

(I)    (II)      (III)            (IV)        (V)             (VI)              (VII)
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The NSEs splitted in 3 components

• The meaning of the terms are:
(I) inertial acceleration

(II) apparent acceleration due to curvature

(III) apparent acceleration due to curvature

(IV) pressure gradient acceleration

(V) gravitational acceleration

(VI) Coriolis acceleration

(VII) friction acceleration

• Terms II and III represent the geometric correction to the 
relative acceleration in the non-inertial terrestrial system 
• They do not depend on the Earth rotation

• They depend only on the curvature of the coordinate system → for this 
reason, they can be neglected for synoptic motions at middle latitudes
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Classification of the NSEs

• The behavior of solutions of the NSEs can be classified
using dimensionless numbers:

• Strouhal Number

• Rossby Number

• Euler Number

• Reynolds Number
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Reynolds-Number and turbulence

• The Reynolds-Number 

(l being the length scale of the system) provides an 
estimate for laminar or turbulent behavior of a fluid

• Critical Reynolds numbers: 
• Recrit ≈ 50,000 for flat surfaces 

• Recrit ≈ 2,300 for tubular structures
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Reynolds-Number and turbulence

17



Reynolds-Number and turbulence

• Typical Reynolds numbers in the atmosphere:
• Viscosity: = 0.15 cm2/s

• Typical velocity: U = 5 m/s

• Typical length scale: l = 1000 m

• → Re ≈ 3 108
→ quite high → atmosphere is 

governed by turbulence

• Length scale above which turbulence occurs is

• →Molecular-viscous flow and dissipation of energy 
is important only at length scales below ≈ 3 mm
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Synoptic scale analysis

• Scaling is a technique useful to determine whether some terms 
in the equation are negligible for motions of meteorological 
concern

• Elimination of terms on scaling considerations simplify 
mathematics and allows to eliminate and filter unwanted types 
of motions, like sound waves

• The following scales are assumed characteristics for mid-
latitude synoptic systems

L  106 m horizontal length scale (~a nation)

H  104 m vertical length scale (~troposphere)

U  10 m s-1 wind speed scale

W  0.01 m s-1 vertical velocity scale

p  1000 hPa (105 Pa) mean surface pressure

p  10 hPa (103 Pa)  pressure horizontal variation scale

/  10-2 fractional density fluctuation

T  L/U  105 s time scale



Scale analisis of horizontal NSEs

• It is possible to scale each term of each horizontal 
equation using previously defined scales and the 
definition of the Coriolis parameter (mid-latitude):

f0 = 2  sin f0 = 2  cos f0 ≈ 10-4 s-1 (f0 = 45°)
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The geostrophic approximation

• Neglecting friction, gravitation and inertial acceleration (=stationary flow: 
du/dt=0) in the NS equations:

• In cartesian coordinates (neglecting term with w):

where the approximation f0=2sinϕ02cosϕ0 is valid at middle latitudes (ϕ0  45°)

• This equation defines the geostrophic wind as the wind produced by the balance 
between Coriolis and (horizontal) pressure gradient acceleration

• The above equation are diagnostic, not prognostic
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The geostrophic wind

• The geostrophic wind is perpendicular 
to the pressure gradient

• In the free atmosphere, approximately 
3 km above Earth surface, the inertial, 
curvature and friction accelerations are 
several order of magnitude lower than 
Coriolis and (horizontal) pressure 
gradient accelerations, and can be 
neglected

• Geostrophic wind is determined by the 
distribution of the surface pressure
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Change of geostrophic wind

• Example: consider case where geostrophic 
wind has been established

• Now move to a region with smaller p-
gradient

• Wind speed becomes faster than during 
geostrophic balance

• Resulting force Fr leads to an acceleration of 
air parcel towards higher pressure

• Direction of Fc changes

• direction of Fr changes

• change in v until new steady state is reached

• Similar for case of stronger p-gradient
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The ageostrophic wind

• Geostrophic wind exists only for ϕ>10°, otherwise Coriolis 
acceleration (sin ϕ) is too weak
• This means that, near Equator, Coriolis acceleration is weak: in case of 

strong minima/maxima, PGF is the largest force 

• ➔ at Equator there are NOT large minima/maxima

• Pure geostrophic wind cannot reduce pressure gradient as 
it is parallel to isobars

• In the real atmosphere, friction exists always

• Molecular friction is only important in lowest few cm of the 
atmosphere, leading to the “no-slip boundary condition”

• Friction active in the troposphere is the “turbulent friction”
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Geostrophic wind with friction

• Assume balance of PGF, Coriolis and 
(turbulent) friction:

• Angle of wind velocity depends on 
surface friction, e.g.:
• ocean: 15°-30°

• land: 25°-40°

• “rough” land: 35°-50°
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Geostrophic equilibrium @ 700 hPa

Geostrophic approximation 
is valid at 700 hPa or 
higher levels



Geostrophic equilibrium @ sfc

Geostrophic approximation 
is less valid at the surface 
or lower levels



Approximate prognostic equation

• In these equations, acceleration term (small) is given by the 
difference between two larger terms → large errors in its 
determination

• Measure of magnitude of acceleration (inertial force) compared 
with Coriolis force is given by the Rossby number Ro=U/f0L

• The physical meaning of this fact is that the geostrophic 
equilibrium represents a sort of “attractor” and the deviations 
from this equilibrium, produced by pressure and/or density 
fluctuations, generate geostrophic re-adjustment accelerations 
which are one order of magnitude lower and which guide the 
atmosphere to another geostrophic state

28

Ro
Lf

U

Uf

L
U

termCoriolis

terminertial
===

00

2

 

 



Quasi-geostrophic approximation

• The geostrophic wind is determined by the pressure field

• It represent an idealization of the real wind, good at synoptic scale

• To look at a most real situation, in which wind field evolve in time, it is 
necessary to consider inertial terms:

or:

• The two additional non-stationary terms with time derivatives represent 
the re-adjustment between the terms of Coriolis and of pressure 
gradient during the time evolution

• These are the simplest prognostic equations of atmospheric motions
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Quasi-geostrophic approximation

• The importance of inertial terms (accelerations) with respect to 
the Coriolis terms is expressed by the ratio between the 
respective scale accelerations

• The characteristic scale for the inertial accelerations is 
suggested by the advective part, and its magnitude order is 
about U2/L, U and L being, respectively, the velocity and 
geometric scales

• The characteristic scale for the Coriolis term is instead foU

• Then, the ratio between U2/L and foU, i.e. U/foL, defines a 
dimensionless number known as Rossby number, which 
express the limit of validity of the geostrophic approximation

• The geostrophic approximation is better as smaller is the value 
of Ro

30



Approximate prognostic equation

• Retaining only the two biggest terms, it is possible to write the 
geostrophic balance. This allows the definition of geostrophic 
wind as balance between Coriolis and pressure gradient forces:

• However, this equation is diagnostic (no reference to time). To 
obtain prediction equation it is necessary to retain also 
acceleration term. The resulting approximate horizontal 
equations can be written as:
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Scale analisis of vertical equation

• By scaling the vertical equation, we arrive to:

• The biggest terms (gravity and PGF) give the hydrostatic 
approximation:
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Hydrostatic approximation

• In the equation for the vertical speed component [dw/dt] of NSEs, 
the dominant terms at synoptic scale are gravity and PGF

• Their values are about 8 order of magnitude bigger than those of 
inertial term

• These two terms must thus balance each other:

• In other words, the atmospheric pressure must be, in synoptic 
motions, in each point and moment, equal to the weight of the unit 
air column above it 

• However this condition may not be sufficient: it is necessary to 
verify that this condition remains valid even in presence, at synoptic 
scale, of perturbed horizontal velocity fields – i.e. of horizontal 
pressure fields at several levels
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Hydrostatic approximation

• To demonstrate that the condition [dw/dt<<g] is valid at synoptic 
scale, a perturbative analysis is needed

• Let’s define vertical pressure and density fields {p0(z)} and {0(z)} 
as horizontal averages in x, y and t at each heigth z, which satisfy 
the exact hydrostatic equilibrium:

• Let’s decompose the fields:

• Considering ’/010-2,

so we get: 
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Hydrostatic approximation

• The order of magnitude of the last two term is 10-1 (ms-2) 

• This result shows that the scale accelerations associated to the two 
perturbed terms of pressure and density are several order of magnitude 
larger than those associated to other terms (in particular the inertial one 
dw/dt) and must thus be equal and opposite

• Being the first bracket at right identically null, thus also the perturbed part 
has the same order of magnitude than the mean field

• Thus also the perturbed pressure field is in hydrostatic equilibrium, with an 
approximation of 1 part on 103

• This means that, at synoptic scale, the vertical accelerations are negligible 
and, consequently, vertical velocities cannot be deduced by the vertical 
component of NSEs, which has been substituted by static equation
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Isobaric coordinates: geostrophic wind

• Using the positions p/z = - g and g dz = d, geostrophic 
wind becomes: 

• and approximate equation for horizontal motions:

• In both cases, density not appears explicitly in equations in 
isobaric coordinates, thus the geostrophic law is explicitly 
independent from the height
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Isobaric coordinates: barotropy

• When isobaric surfaces are parallel (barotropic atmosphere), geostrophic 
wind is constant with height

• At higher quotes density decreases and pressure gradients decrease too: 
vertical pressure gradients vary with height

• However, in isobaric coordinates, as density do not appear in the equation, 
distance between isobaric surfaces does not change, and vertical 
geopotential gradients between isobaric surfaces are equal at all levels: 

• in isobaric coordinates, iso-geopotential surfaces are not only parallel as isobaric 
surfaces in geometric coordinates, but also at equal distance
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Isobaric coordinates: geostrophy

• Moreover, in the motion in which f can be considered 
constant and wind is quasi geostrophic, it is:

where it has been used the identity:

and

• The meaning of this equation is that geostrophic wind 
over isobaric surfaces is a nondivergent vector, i.e. a 
solenoidal vector, without sources or sinks

• This result has been obtained using isobaric coordinates 
under the only hypothesis of f constant (without need of 
constant)
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