
Vorticity and Potential Vorticity (PV)

Textbooks and web sites references for this lecture:

• James R. Holton, An Introduction to Dynamic Meteorology, Academic Press, 1992, ISBN 0-12-354355-X

• A. Longhetto – Dispense di Fisica dell’atmosfera

• Physic der atmosphäre - Institut für Umweltphysik - Universität Heidelberg

• Adrian M. Tomkins – Atmospheric Physics – ictp_atmospheric_physics.beamer.pdf
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• Definition of circulation around a closed contour in a fluid: 

• Using (frictionless) Navier-Stokes equations:

is the  the derivative of circulation is:

and remembering that and    

(definitions of absolute variables, inclusive of local velocity and Earth’s angular velocity)

the derivative of absolute circulation can be defined as:

from which we see that, in barotropic atmosphere, circulation is null

Circulation and its theorem
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The concept of vorticity

Apart from the conservation of energy and momentum, the angular
momentum is a conserved quantity in a dynamical system

In atmospheric physics, the conservation of angular momentum is
expressed as the conservation of the vortex strength of the wind vector
field

Different definitions of the vortex strength exist
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Vorticity

This vectorial field can be considered as the microscopic measure of 
rotation in a fluid, and is defined as the curl of velocity:

The components of ω are:

In meteorology, the curl of the wind vector field is only important in the 
horizontal, since the vertical extent of the atmosphere is very small, thus
only vertical components of ω is relevant:
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Vorticity and circulation

The curl of a vector field perpendicular to a given surface A with normal 
vector is related to the circulation Z of the vector field (i.e., the closed 
path integral along the border S of A):
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Vorticity and circulation

Circulation in Cartesian coordinates:

dG =  u(y)dx   +  v(x+dx)dy - u(y+dy)dx  - v(x)dy
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Vorticity and circulation

With dA=dxdy the above equation becomes:

Note that these findings are a special case of the Stokes theorem:

Sign of ζ:

– Positive for counterclockwise rotation

– Negative for clockwise rotation
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Vorticity of a Rigid Rotator

Velocity at distance r from the axis:

v = ω r

Circulation:

Thus, the vorticity is:

→The vorticity of a rigid rotator is twice its angular velocity

Example: High pressure system, R = 500 km, v=10 ms-1
→

ω =v/r≈10/(5·105)= 2·10-5 s-1
→ ζ= 2 ω= 4·10-5 s-1
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Vorticity of a curved trajectory

General case of a curved trajectory

Radius of curvature function of ds:

r ⊥ v: dv•r=0

Circulation around infinitesimal area: dA= (r d) (dr)

Dividing by the infinitesimal area dA:
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    In case of a rigid rotator, v=r so dv/dr= and
=+=2 as said before
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Vorticity of shear winds

Let’s assume flow (wind) in 

x-direction, for simplicity

Thus v=0 and v/x=0

Thus the vorticity is:

A straight line connecting different air parcels in y-direction will rotate,
due to wind shear
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The absolute vorticity

The dynamics of the atmosphere is described in a rotating coordinate 
system

The Earth is a rigid rotator with angular velocity Ω

Local (planetary) vorticity in z-direction at latitude  is given by the 
Coriolis parameter

f = 2 Ω sin 

– (see previously discussed vorticity of a rigid rotator)

Thus the absolute vorticity ωa (and its vertical component ζa) of the wind
field is the sum of the relative vorticity ω (and its vertical component ζ), 
measured relative to the terrestrial coordinate system, and the Coriolis
parameter (where f is the vertical component):
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Vorticity

where terms        vanish because the curl of a gradient vanishes ,0)( = a
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The vorticity equation

• Being the absolute vorticity equal to a=+2, it is:

where  is the specific volume 1/

• Also, considering that: it is

• Then by applying the standard vector relationship:

where the 2nd RHS term vanishes because it contains the divergence of a curl (the vorticity).
• Re-arranging terms (the 3rd RHS is the vorticity advection):
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The vorticity equation
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• We use now the continuity equation multiplied by

and the vorticity eqn. multiplied by 1/:

• Summing and multipliying by : 
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The vorticity equation: vertical component
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• This equation can be rewritten as:

• The vertical component of total (i.e. absolute) vorticity is the most relevant
for cyclones/anticyclones, and can be written as:
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The vorticity equation: vertical component
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• Taking into account the exact values of the absolute vorticity components, and neglecting w in the 
definition of vorticity components (good assumption in large-scale meteorology), equation 
simplifies in:
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Scale analysis of the vert. comp. of vort. eq.
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• In mid-latitude synoptic scale dynamic meteorology, typical magnitudes are:

• With the above scales:

▪ the relative vorticity  U/L  10-5 s-1

▪ the ratio /f0  Ro = U/f0L  10-1

▪ Thus relative vorticity, at this scale, is smaller than planetary vorticity

U  10 m s-1 wind speed scale
W  0.01 m s-1 vertical velocity scale
L  106 m horizontal length scale
H  104 m vertical length scale
p  1000 hPa (105 Pa)  mean surface pressure
p  10 hPa (103 Pa)   pressure horiz. var. scale

p/p  10-2 fract. press. fluctuation
  1 kg m3 mean surface density
/  10-2 fract. density fluctuation
T  L/U  105 s time scale 
f0  10-4 s-1  mid lat. Coriolis param.
=df/dy  10-11 m-1 s-1 beta parameter
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Scale analysis of the vert. comp. of vort. eq. (2)

Total derivative with respect to time can be splitted as:

where all derivatives of f are null (except that of y), and where we have
neglected the term containing r/t

Let now examine these terms one by one
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Scale analysis of the vert. comp. of vort. eq. (3): LHS

The LHS (total derivative) of the vertical component of the vorticity equation splits into:

•  U2/L2  10-10 s-2

•  WU/(LH)  10-11 s-2

•  U  10-10 s-2

•  U2(/)/L210-12 s-2 f0U (/)/L  10-11 s-2

•  UW(/)/HL  10-13 s-2  f0W (/)/H10-12 s-2
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Scale analysis of the vert. comp. of vort. eq. (4): RHS

The RHS (total derivative) scaling of the vertical component of the vorticity equation splits

into:

•  (U/H)(W/L)  10-11 s-2

•  U W/(HL)  10-11 s-2  f0 W/H  10-10 s-2

•  (/) p / (L2)  10-11 s-2

• The only terms remained ( 10-10 s-2) are:
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Results of scale analysis
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• The stretching term is therefore the most important for mid-latitude synoptic 
scale dynamics. In this case, it is:

and therefore the horizontal divergence is  W/H  10-6 s-1, i.e. about one 

order of magnitude smaller than individual terms that are  U/L  10-5 s-1

• That is to say that mid-latitude synoptic scale motions are quasi-nondivergent
(horizontally)

• The approximate vorticity equation is: 
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The potential vorticity
The conservation of vorticity expressed by the vorticity equation is only valid if
there is no vertical movement of air (as we have neglected w)

The vorticity is not conserved if lifting of air (i.e., w≠0) occurs

By combining the vorticity equation with the conservation of mass, a new
quantity is derived: the Potential Vorticity (PV)

For this quantity a more general conservation law can be derived, which is
directly applicable to the atmosphere

The conservation law for the potential vorticity is valid for a barotropic
atmosphere, i.e. if the isolines of pressure and temperature are parallel

Two equivalent definitions for the potential vorticity (after Ertel and Rossby)
exist
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Hans Ertel (1904-1971) was appointed in 
1946 Professor of Geophysics at the 
University Berlin, as well as director of 
the Institute of Meteorology and 
Geophysics there.

Carl-Gustaf Arvid Rossby (1898–1957) was a 
Swedish born American meteorologist who
first explained the large-scale motions of the 
atmosphere in terms of fluid mechanics.



Rossby‘s Potential Vorticity

Rossby‘s potential vorticity is a quantity, related to an air column of finite vertical extent Δz=z2–z1

We assume that the air parcel is bounded at its bottom and top by surfaces of defined pressure or
temperature

Δp=p(z2)–p(z1) is the pressure difference between top and bottom of the air column
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• Integrating the continuity equation

from z1 to z2 yields (after several re-arrangements):

• This equation relates temporal changes in vertical
pressure differences to the horizontal divergence of 
the wind field
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Rossby‘s Potential Vorticity

Now we combine the continuity equation in the form

[Lagrangian form with r=-Δp/(g Δz) ] with the vorticity equation:

Giving:

This is equivalent to

with PVR (Rossby‘s potential vorticity) being a conserved quantity
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Ertel‘s Potential Vorticity
Assuming the upper and lower boundary layers of the air parcel having
the potential temperatures θ1 and θ2, respectively, the difference Δθ is
conserved during adiabatic ascent or descent:

Neglecting the change in density due to different actual temperatures, 
we can express the altitude difference as pressure difference:

Inserting this expression of Δp in eq. for PVR we arrive to Ertel’s PV:
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Some Properties of (Ertel‘s) PV

Dimensions of PVE and PVE*:

Frequently used unit:
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Summary

The conservation of vorticity (curl of the wind field) expresses the 
conservation of angular momentum

The absolute vorticity (sum of relative vorticity and Coriolis parameter) 
also considers the rotation of the Earth

The vorticity follows a continuity equation (the vorticity equation) with
the curl of the external force field as source term

The potential vorticity (PV) is an important concept in atmospheric
dynamics, as it connects the continuity equation with the vorticity
equation and is also valid for vertical movements

PV is a conserved quantity in a barotropic atmosphere
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Example: Change of Wind Direction in Flows Across Obstacles

Change of wind direction in a 
flow across an obstacle (hill) 
due to the conservation of PV

Here a constant Coriolis
parameter is assumed

Note that the direction of 
deflection is independent of 
the direction of flow

Adapted from: W. Roedel, 
1992, p. 107
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Adiabatic Flow Over a Mountain Range (Holton, 1992)

A typical example is a zonal flow over a mountain range in West→East direction, as represented in the 
figure above

Suppose that the initial relative vorticity is null upwind

If the flow is adiabatic, an air column between the two surfaces θ0 and θ0+dθ will remain confined 
between these surfaces during the passage above the mountain

Lower θ surface roughly follows the contour of the mountain

Highest one has a "draft" less pronounced that decreases with the quote and disappears at sufficiently
high θ levels

θ/p varies so it is possible to stretch or compress the columns of fluid, but the potential vorticity PVE 
will be conserved
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Adiabatic Flow Over a Mountain Range (Holton, 1992)

When the flow reaches the bottom of the 
mountain, /p decreases (being the 
isobaric surfaces horizontal, d do not
changes, |dp| increases) then  increases
to conserve PVE

The particle, approaching the mountain, 
curve its trajectory Northwards

This northwards motion also causes a 
growth of f which reduces the  variation
necessary to conserve PVE

When rise starts, air column is
compressed, thus <0 (anticyclonic
curvature) → the particle moves
southwards

pp 






 
Const decreases  increases  decreases

p const increases  decreases   increases

L

H

L
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Adiabatic Flow Over a Mountain Range (Holton, 1992)

Once crossed the mountain, the 
particle has a smaller f (smaller
latitude) than initially, and then
must rotate cyclonically (z 
increases) moving northwards

Moving northwards, f increases
so gradually z decreases since it
becomes negative – flow will
oscillate
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H

L

H

pp 






 
decreases     increases  const

p increases      decreases  const

• Note that horizontal θ-constant surfaces coincide with isobaric surfaces → in these areas the fluid is
barotropic

• Near and above the mountain, the θ-constant surfaces are no longer horizontal → baroclinic
atmosphere → it is essential to account for the conservation of PVE



Adiabatic Flow Over a Mountain Range (Holton, 1992)

When the flow is oriented East→West, the following
situation occurs

Near the bottom of the mountain, Dp increases thus
θ/p decreases and for compensation z must 
increase (cyclonic rotation), forcing the flow 
southwards
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• During the mountain ascent, θ/p increases forcing  to decrease (anticyclonic rotation) – when the 
flow is at the top of the mountain, its direction is again zonal

• During the following descent the decrease of θ/p forces  to increase (cyclonic rotation), while the 
following weak increment of θ/p forces  to decrease (anticyclonic rotation)

• Far from the mountain, the flow is again zonal and at the same latitude of the original flow, thus
obscillations are absent



Summary

The zonal western flows transform the disturbances created by an 
orographic relief in wave fluctuations downwind to the mountains

The zonal eastern flows smooth the disturbances created by an 
orographic relief

Thus, the answer of the two kind of flows to vertical disturbances is
different from the case in which a constante thermal stratification is
imposed
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Rossby Waves (1)
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Rossby Waves (2)
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The Evolution of Rossby Waves
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PV and Potential Temperature Gradients
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