
Summary of governing equations

Textbooks and web sites references for this lecture:

• James R. Holton, An Introduction to Dynamic Meteorology, Academic Press, 1992, ISBN 0-12-354355-X (§ 1-3)
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Momentum equation  (Navier-Stokes)

The momentum equation can be written assuming that the only real forces acting on 
the atmosphere are pressure gradient force, gravitation and friction, and the 
apparent Coriolis force is written explicitly while the apparent centrifugal force has 
been included in the gravity term g:

This equation can be splitted into the three components:
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Synoptic scale analysis

Scaling is a technique useful to determine whether some terms in the equation are
negligible for motions of meteorological concern

Elimination of terms on scaling considerations simplify mathematics and allows to
eliminate and filter unwanted types of motions, like sound waves

The following scales are assumed characteristics for mid-latitude synoptic systems

U  10 m s-1 wind speed scale
W  0.01 m s-1 vertical velocity scale
L  106 m horizontal length scale
H  104 m vertical length scale
p  1000 hPa (105 Pa) mean surface pressure
p  10 hPa (103 Pa)  pressure horizontal variation scale
/  10-2 fractional density fluctuation
T  L/U  105 s time scale
  10-1 m2 s-1 kinematic air diffusivity
f0  10-4 s-1 Coriolis parameter
a  107 m Earth radius
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Scale analysis of horizontal equation

It is possible to scale each term of each horizontal equation using
previously defined scales and the definition of the Coriolis parameter:

f0 = 2 Ω sin f0 = 2 Ω cos ϕ0 = 10-4 s-1
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Geostrophic wind

Retaining only two bigger terms from the analysis equation, it is possible
to write the first approximation geostrophic balance:

This equation is diagnostic (no reference to time) and allows the
definition of geostrophic wind as balance between Coriolis and pressure
gradient forces
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Approximate prognostic equation

To obtain prediction equation it is necessary to retain also acceleration term. The
resulting approximate horizontal equations can be written as:

In these equations, acceleration term (small) is given by the difference between two
larger terms→ large errors in its determination

Measure of magnitude of acceleration compared with Coriolis force is given by the
ratio of their characteristic scales, called Rossby number:
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Scale analysis of vertical equation

By scaling in the same way vertical equation, we arrive to:

The biggest terms give the hydrostatic approximation (valid also for
perturbations):
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Continuity equation

It can be written in one of the two forms:

Scale analysis of the second show that local time derivative of pressure is
an order of magnitude lower, leaving:

Notice that this is different from the incompressible fluid hypothesis,
valid in the boundary layer
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Thermodynamic energy equation
Starting from the usual form of thermodynamic equation:

where J=dq/dt is the rate of heating per unit mass owing to radiation,
conduction, and latent heat release, and α=1/r, we can use continuity
equation to show that:

For dry air, internal energy per unit mass is defined as e=cvT

This allows to rewrite thermodynamic equation as:

dTCpdVdULQ v+=+= dTcpdJdtq v+== 
Per unit
mass

0
1

=+ V
dt

d






dTcpdJdtq v+==  V
p

dt

de

dt

dp

dt

de
J +=−=





 2

JVp
dt

de
 +−= 

1

𝜌2
𝑑𝜌

𝑑𝑡
+

1

𝜌
∇ ∙ 𝑉 =0

dt

d

dt

d
V




=−=

2

11


A.Y.2020-21 C. Cassardo - Summary of governing equations 9



Thermodynamic energy equation

Let’s suppose no convergence/divergence (∇ ∙ 𝑉 = 0): in this case, a
positive (negative) J produces positive (negative) variation of e, e.g.
positive (negative) variation of T

Let’s suppose no heating rate (𝐽 = 0): in this case, a positive (negative)

convergence (∇ ∙ 𝑉 > 0) produces negative (positive) variation of e, e.g.
negative (positive) variation of T
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