Prova scritta di MECCANICA QUANTISTICA II

11 Aprile 2003

Esercizio 1.

All'istante iniziale $t_0=0$ un oscillatore armonico unidimensionale si trovi nello stato

 $|\psi\rangle = \frac{1}{2} \left(i\sqrt{3} |0\rangle + |1\rangle \right)$

dove abbiamo usato le definizioni

 $|1\rangle = a^{\dagger}|0\rangle$, $a|0\rangle = 0$, $a = \sqrt{\frac{m\omega}{2\hbar}} \left(x + \frac{i}{m\omega} p \right)$.

Calcolare dapprima a t = 0 e poi per ogni t > 0

- 1. il valore medio dell'energia;
- 2. il valore medio del momento;
- 3. il valore medio dell'operatore paritá.

Esercizio 2.

Si consideri il moto angolare nel piano xy descritto dall'Hamiltoniana:

$$H = H_0 + H_1,$$

dove

$$H_0 = \frac{L_z^2}{2I}$$

 \mathbf{e}

$$H_1 = a \cos 2\varphi$$

rappresenta una perturbazione.

Si calcolino al piú basso ordine perturbativo non banale le correzioni

- 1. allo stato fondamentale,
- 2. al primo stato eccitato.

Esercizio 3.

La dinamica dei due elettroni di un atomo di Elio immerso in un campo magnetico B sia descritta dall'Hamiltoniana seguente:

$$H = H_1 + H_2 + H_B;$$

 ${\cal H}_1$ e ${\cal H}_2$ sono le solite Hamiltoniane per un elettrone in potenziale coulombiano e

 $H_B = \mu B \frac{S_z}{\hbar},$

dove S_z é la terza componente dello spin totale $\overrightarrow{S} = \overrightarrow{S_1} + \overrightarrow{S_2}$ dei due elettroni.

- 1. Nel caso B = 0:
 - 1a) quanto vale lo spin totale s nello stato fondamentale?
 - 1b) quanto vale l'energia minima qualora i due elettroni si trovino in uno stato di tripletto di spin?
- 2. Per B > 0, scrivere gli autovettori di H_B nello spazio di spin e i corrispondenti autovalori.
- 3. Usando i risultati dei punti 1) e 2), scrivere lo stato, o gli stati, di energia minima E_{min} del sistema descritto dall'Hamiltoniana H e verificare che E_{min} non dipende da B se e solo se |B| é minore di un opportuno B_0 .

NOTA. Si usi la notazione standard |n, l, m> per la parte orbitale degli autostati delle hamiltoniane H_1 e H_2 e $E_n=\frac{1}{n^2}E_1$ per le corrispondenti energie, dove E_1 é l'energia dello stato fondamentale di un elettrone in un atomo idrogenoide.

¹Si sono trascurate sia l'interazione fra i due elettroni che quella del campo magnetico con il momento angolare orbitale.