Prova scritta di Meccanica Quantistica II

Corso di Laurea in Fisica

COMPITO 1

	9 Luglio 2002
Nome	
Matricola	

Es. 1 Si consideri una particella di massa m nella buca di potenziale di profondità infinita, con V(x) = 0 per |x| < a e $V(x) = \infty$ per |x| > a. La funzione d'onda normalizzata per t = 0 è

$$\psi(x) = \begin{cases} 0 & |x| > a \\ A \left(1 + \cos\frac{\pi}{a}x\right) & |x| < a \end{cases}$$
 (1)

- a. Usando solo argomenti dimensionali trovare la costante di normalizzazione A per ogni valore di a, sapendo che per a=1 si ha $A=\frac{1}{\sqrt{3}}$.
- b. Lo stato descritto da $\psi(x)$ è un autostato dell'operatore parità? In tal caso, qual è l'autovalore?
- c. Si calcoli il valor medio dell'energia E.
- d. Effettuando una misura di energia sullo stato descritto da ψ , quali sono le probabilità di ottenere energia E_1 ed E_2 (si vedano le formule alla fine del testo)?
- Es. 2 Un sistema formato da una particella A di spin 1 e da una particella B di spin $\frac{1}{2}$ si trovi all'istante t=0 nello stato

$$\left|J=\frac{3}{2};J_3=\frac{1}{2}\right\rangle$$

dove \vec{J} è lo spin totale del sistema.

- a. All'istante t = 0 si effettui una misura della terza componente S_3^A dello spin della particella A; quali valori si possono ottenere e con che probabilità?
- b. Immediatamente dopo si effettui una misura di \vec{J}^2 , ma solo su quei sistemi per cui la misura precedente ha dato come risultato $S_3^A=0$; quali valori di \vec{J}^2 si possono ottenere e con che probabilità?

Formule utili

* Autofunzioni normalizzate dell'hamiltoniana della buca di altezza infinita di semilarghezza a=1 e relativi autovalori:

$$\psi_{2n}(x) = \sin n\pi x ,$$

$$\psi_{2n+1}(x) = \cos \frac{(2n+1)\pi}{2} x ,$$

con

$$E_n = \frac{\pi^2 \hbar^2}{8m} n^2 .$$

** Operatori di innalzamento e abbassamento.

$$L_{\pm}|jm\rangle = \hbar \sqrt{j(j+1) - m(m\pm 1)} |j,m\pm 1\rangle$$
.

*** Formule trigonometriche:

$$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin (\alpha + \beta) + \sin (\alpha - \beta) \right]$$
$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos (\alpha - \beta) + \cos (\alpha + \beta) \right]$$