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Course introduction and overview



Introduction

Part I - Dott. Luca Pacher

− introduction to FPGA programming using Xilinx Vivado and Verilog HDL

− course delivered in form of remote video-lectures (Webex) + practical labs

− 40 hours (4 CFU)

Part II - Prof. Michela Greco

− introduction to micro-controllers programming using Arduino

− introduction to LabView programming for Data Acquisition (DAQ) systems

− 20 hours (2 CFU)

For the second part, details from Prof. Greco



Remote lectures

− 2 hours per lecture

− always connect to my personal Webex room:

https://unito.webex.com/meet/luca.pacher

− all lectures will be recorded !

− links to recorded sessions in the main course page on CampusNet

− I will also put the link in the main README file on the GitHub repository

(more details about Git later on)

https://unito.webex.com/meet/luca.pacher


Exam

Also the exam is split into two parts :

− one grade for each part

− the final grade will be the weighted mean between the two

− you are not requested to take the exam in the same session

− ”official” exam days, but you can arrange with teachers according to your needs

For the first part :

− design and simulation of a small digital system using Verilog HDL and Vivado

(max. 2 students per project)

− description of your project in form of a short report in English (max. 8-10 pages)

using LaTex, ”paper style” (as it happens in the real research life)

− oral presentation of your project with slides in English, ”conference style”

(as it happens in the real research life) followed by a few questions



To make you feel like a ”pro” ...



Final project

Feel free to implement whatever you want ! ...

... or simply google for ”FPGA project”, ”Verilog project” or ”VHDL project” etc.

In case you really run out of ideas :

− a waveform generator

− a FIFO in Verilog (we will compile a soft IP for lectures instead...)

− a master/slave system connected through UART protocol

− a master/slave system connected through SPI protocol

− a master/slave system connected through JTAG protocol

as from IEEE Std. 1149.1-2001

− a clock-domain-crossing (CDC) FIFO

− floating-point arithmetic (e.g. compute
√
x or sinx in real hardware)

− etc.



Main CampusNet course page

− https://fisica.campusnet.unito.it/do/corsi.pl/Show? id=70d4

− slides and links to video-recorded lectures

https://fisica.campusnet.unito.it/do/corsi.pl/Show?_id=70d4


GitHub repository /1

GitHub repository :

− https://github.com/lpacher/lae

− setup scripts, RTL sources, Tcl scripts, Makefiles, XDCs (more details later on ...)

Register and create a GitHub account !

https://github.com/lpacher/lae


GitHub repository /2

In this course we will write a lot of code !

− Verilog RTL and testbech sources

− simulation and implementation scripts in Tcl, GNU Makefiles

− timing and physical constraints (XDC)

− XML configuration files for IPs (XCI) etc.

Final ”working solutions” for all examples proposed during lectures will be uploaded
to our GitHub repository before each lecture. To get all updates just use git from the
command line :

cd /path/to/lae

git pull origin master

Detailed information about Git installation and configuration can be found in the main
README file https://github.com/lpacher/lae/blob/master/README.md

I would also recommend to use Git for your final project !

https://github.com/lpacher/lae/blob/master/README.md


Course program

− Verilog HDL fundamentals, HDL design flow

− Logic values, resolved vs. unresolved logic values, 3-state logic, buses and endianess

− review of boolean algebra

− introduction to Xilinx Vivado simulation and implementation flows

− design and simulation of combinational circuits with Verilog examples (multiplexers,
decoders, encoders etc.)

− FPGA architectures overview and basic building blocks (fabric, BEL, LUT, CLB, CLA,
slices, IOBs, hard-macros)

− introduction to Xilinx Design Constraints (XDCs)

− sequential circuits, latches and FlipFlops

− counters, registers, PWM, shift-registers, FSM, FIFOs, RAM/ROM

− advanced Xilinx Design Constraints (XDCs): timing fundamentals

− synchronous design good and bad practices, example Vivado IP flows (clock wizard, FIFO
compiler)

− gate-level simulations with back-annotated delays (SDF)

− practical implementation and test of small digital systems targeting a Xilinx Artix-7 FPGA
device



Questions ?



Introduction to digital systems
design using Verilog HDL



References

No need to buy a book for the course, the provided course material is enough.

In case you want to deepen yourself your knowledge about FPGA programming:

− Digital Design, Principles and Practice

J.F. Wakerly, Prentice Hall, 2005

− Digital Electronics, Principles, Devices and Applications

A.K. Maini, Wiley&Sans, 2007

− Verilog Digital System Design

Z. Navabi, McGraw-Hill, 2006

− Introduction to Digital Design Using Digilent FPGA Boards - Block
Diagram/Verilog Examples

R.E. Haskell, D.M. Hanna, LBE Books, 2009

− FPGA Prototyping By Verilog Examples

P.P. Chu, Wiley, 2008



Other resources

− a lot of material in form of tutorials, open documentation and YouTube

videos is available on the web

− complete list of reference material available in the main README file

on GitHub



Digital systems

analog signals :

− continuous in both time and amplitude

− usually a voltage v(t) or a current i(t) as a function of time

− reach of information (e.g. frequency spectrum, FFT)

digital signals :

− usually continuous in time but discrete in amplitude

− only two possible values e.g. high/low voltage levels, true/false, on/off,
closed/open etc.

− less information, but more robust against noise

− can be either asynchronous signals or synchronous signals



Classification of digital circuits

Digital circuits are classified as :

combinational circuits

sequential circuits

− asynchronous

− synchronous



Hardware Description Languages (HDL) /1



Hardware Description Languages (HDL) /2



Hardware Description Languages (HDL) /3



Hardware Description Languages (HDL) /4



Hardware Description Languages (HDL) /5

COMPLEX digital system (e.g. micro-processor)

⇒ HDL description and simulation of the system, that is... write CODE !

⇒ a SYNTHESIS tool generates the real HARDWARE for you !



Hardware Description Languages (HDL) /6

Hardware Description Languages (HDLs) :

− they are NOT ”programming” languages !

− provide constructs for both implementation (describe the functionality of
digital circuits) and verification (simulations, assertions etc.)

− synthesis (first step of modern digital design flow)

− ”synthesizable” constructs are only a minimal subset of the full language

two main options on the market :

− VHDL

− Verilog

advanced options :

− high-level synthesis (HLS) using C/SystemC

− SystemVerilog

− analog and mixed-signal simulations (Verilog-A, Verilog-AMS, VHDL-AMS)



VHDL

− VHDL = VHSIC-HDL (Hardware Description Language)

− VHSIC = Very High Speed Integrated Circuit

− born in 1983 as a project from US Department of Defense (DoD)

− syntax derived from the ADA programming language (similar to PASCAL)

as requested by DoD

− initially foreseen as a language used to simulate digital integrated circuits

− later used also for digital synthesis

− 1987: first standardization as IEEE Std. 1076-1987 (aka ”VHDL 87”)

− 1993: first major revision of the language as IEEE Std. 1076-1993

(aka ”VHDL 93”)

− 2008: second major revision of the language as IEEE Std. 1076-2008

(aka ”VHDL 2008”)

− provides constructs for both physical implementation (synthesizable) and simulation

− very reach syntax

− extremely verbose and strongly typed !



Verilog

− created by P. Goel, P. Moorby, C.L. Huang and D. Warmke between late 1983 and early
1984

− syntax derived from the C programming language

− introduced by Gateway Design Automation, later purchased by Cadence Design Systems
in 1990

− born as a verification language for logic designs, intended to describe and simulate

digital integrated circuits similar to VHDL

− initially a proprietary and closed language owned by Cadence

− later released by Cadence as an open language in order to cope with the increasing

popularity of VHDL (already standardized by IEEE in 1987)

− 1995: first standardization by IEEE as IEEE Std. 1364-1995 (aka ”Verilog 95”)

− 2001: first major revision of the language with extensions and new language features

known as IEEE Std. 1364-2001 (aka ”Verilog 2001”)

− 2006: second major revision with minor changes as IEEE Std. 1364-2006

(aka ”Verilog 2006”)

− finally merged as a sub-set of the SystemVerilog HDL as IEEE Std. 1800-2009



Verilog vs. VHDL

Verilog and VHDL are the two most widespread HDLs in the world :

− approx. 50% market each one

− Verilog more popular in US and Japan, VHDL in Europe

− Verilog more used (and integrated with professional CAD tools) to design

Application-Specific Integrated Circuits (ASICs)

− traditionally VHDL more used for FPGA programming instead

− both equally and well supported by Xilinx

− exception: gate-level timing simulations only supports Verilog netlists

− individual preference, usually mostly historical (that is, first language learned...)

− Verilog is easier to learn (C-like syntax), but also potentially more error-prone

due to its relaxed data typing

− that is... you can make real disasters on silicon with Verilog, while using VHDL

is pretty impossible

− if you will do my job at the end you will learn both, or at least you will be able

to read both codes

− if you start alone from scratch... learn VHDL first, then move to Verilog

once really annoyed with VHDL ”verbose” coding



Digital simulators

Many different digital simulators available on the market.

From the ”big threes” :

− QuestaSim (the professional version of ModelSim) by Mentor (now Siemens)

− Xcelium (legacy Incisive) by Cadence

− VCS by Synopsys

Integrated with FPGA programming suites :

− XSim as part of the Vivado design suite by Xilinx

− ISim as part of the legacy ISE design suite by Xilinx

− ModelSim Altera as part of the Quartus design suite by Altera (now Intel)

Other solutions :

− Aldec HDL by Aldec

− open source simulators ( FreeHDL, Icarus, GHDL etc,)



Verilog HDL syntax fundamentals

Lab 1 - A simple inverter in Verilog



Syntax fundamentals

The Verilog HDL by purpose follows a syntax derived from the well-known
C programming language :

− Verilog is case sensitive (on the contrary, VHDL is not case sensitive)

− blanks between statements and empty lines are ignored by the compiler

− comments can be single-line or multiple-lines as in C/C++

// this is a single -line C-style comment

/*

this is a multiple -lines

C-style comment

*/



Code indentation

Always indent your code to improve readability but ...

DO NOT USE TABs !!!



Modules

Any digital block implementing some functionality in Verilog is called module :

module ModuleName (

...

... ) ;

...

endmodule

A module has I/O ports that can be declared as :

− input

− output

− inout

By default, all ports are considered of net type wire unless explicitly declared as
reg (more later on net data types).



Testbench module

In order to simulate1 the functionality of the digital block we also need a testbench
module that generates stimuli fed to input ports of our Module Under Test (MUT),
also referred to as Device Under Test (DUT) :

module tb_ModuleName ;

...

...

// Device Under Test (DUT)

ModuleName DUT (....) ;

...

endmodule

The module under test is always instantiated inside the testbench module, which
contains non-synthesizable code.

1In semiconductor industry there is a ratio of about 10:1 between verification engineers and
HDL designers.



Verilog data types



Logic constants

The Verilog HDL natively2 provides four logic values 1, 0, X and Z :

− 1 for logic-high (true, closed, on, etc.)

− 0 for logic-low (false, open, off, etc.)

− X for unknown, can be either 0 or 1

− Z for the high-impedance state

2On the contrary, by default VHDL only provides the bit values 0/1 and you need to include
IEEE.std_logic_1164.all to extend logic values.



Timing diagrams (aka ”waveforms”)

Logic simulation results are visualized in form of timing diagrams, also referred

to as waveforms :

X 1 0 Z 1



Basic net data types: wires and registers

In Verilog physical nets can be either of type wire or reg :

− wire nets are physical signals assigned using continuous assignments

− reg nets are more like variables in programming languages and are assigned
within procedural blocks such as initial and always (see later)

Declaring something as reg does not imply that a ”register”
(latch or FlipFlop) is inferred in real hardware !

Additional net types exist for special purposes (not used in the course) :

wand, wor, tri, triand, trior, supply0, supply1



Scalars, buses and endianness

Single wires are called scalar signals :

wire sum , cout ;

reg ZN ;

More wires sharing the same functionality can be grouped together to form a bus using
C-style arrays :

wire [1:0] select ;

reg [4:0] count = 5'b00000 ;

Any binary word always has a Most Significant Bit (MSB) and a Least Significant
Bit (LSB) along with a well-defined bit-ordering, called endiannes :

wire [N-1:0] be_bus ; // big -endian => MSB ... LSB

wire [0:N-1] le_bus ; // little -endian => LSB ... MSB



Slicing and concatenation

Since buses follow the syntax of C-style arrays :

− a single element of a bus can be accessed using the index in the array

e.g. wsb[3]

− two or more consecutive bits of a bus are a slice and can be accessed

using two indices in the array e.g. wsb[7:3]

Differently from C/C++ programming languages, curly brackets { and } are used to
concatenate scalars or buses to build larger buses :

wire A,B ;

wire [1:0] select ;

assign select = {A,B} ; // concatenation

wire [3:0] control ;

wire [5:0] LED ;

assign LED = {A,B,control [3:0]} ; // concatenation



Numbers and radices

Buses are collections of bits that can be interpreted as numbers in some radix (base) :

busWidth 'radix <value >

Available base identifiers in Verilog are :

− 'b for base-2 i.e. binary numbers

− 'o for base-8 i.e. octal numbers

− 'd for base-10 i.e. decimal numbers

− 'h for base-16 i.e. hexadecimal numbers

Example :

wire [11:0] number ; // 12-bit bus

assign number = 12' b1010_1001_1011 ; // straight binary

assign number = 12'hA9B ; // hexadecimal

assign number = 12'o5233 ; // octal

assign number = 12'd2715 ; // decimal



Binary codes (most important... )

”straight” binary (the usual ”power of 2”)

Gray code

thermometer

one-hot / one-cold

Many many others : e.g. Hamming (for SEU protection)



Straight binary code

Usual binary strings interpreted as usual as ”power of 2” integer numbers :

3'b000 // 0

3'b001 // 1

3'b010 // 2

3'b011 // 3

3'b100 // 4

3'b101 // 5

3'b110 // 6

3'b111 // 7

x = b0 × 20 + b1 × 21 + b2 × 22 + ...+ bN−12
N−1 =

N−1∑
i=0

b i 2
i



Gray code

Only one bit change from a code to the next one :

3'b000 // 0

3'b001 // 1

3'b011 // 2

3'b010 // 3

3'b110 // 4

3'b111 // 5

3'b101 // 6

3'b100 // 7



Thermometer code

Continue to ”padd” the code with a 1 on the right :

7'b0000000 // 0

7'b0000001 // 1

7'b0000011 // 2

7'b0000111 // 3

7'b0001111 // 4

7'b0011111 // 5

7'b0111111 // 6

7'b1111111 // 7



One-hot code

Only one bit set to one, then moving to the left :

7'b0000000 // 0

7'b0000001 // 1

7'b0000010 // 2

7'b0000100 // 3

7'b0001000 // 4

7'b0010000 // 5

7'b0100000 // 6

7'b1000000 // 7

The complementary is sometimes called ”one cold”



Additional useful data types: integer

integer numbers :

− 32-bit signed integer

− same as int in C/C++

− synthesizable

− mainly used as iterators inside for and while loop statements

integer i ;

for(i=0 ; i<N ; i=i+1) begin

...

...

end



Implicit type casting

Verilog HDL is extremely relaxed with respect to VHDL in handling different data

types and assignments !

Example :

// this syntax compiles , however ...

reg [4:0] count = 0 ;

− count is declared as a 5-bit bus, but 0 is a 32-bit integer !

− a VHDL compiler will never accept such an assignment, while Verilog implicitly
performs a type cast for you

As a good coding practice always specify the right size to avoid unexpected results
after synthesis :

reg [4:0] count = 5'b00000 ; // or simply 5'd0



Additional useful data types: real

real numbers :

− 64 bit IEEE double-precision floating point number

− same as double in C/C++

− NOT synthesizable !

− mainly used for simulation purposes or to model A/D and D/A converters

parameter real PERIOD = 50.0 ;

reg clk = 1'b0 ;

always #( PERIOD /2.0) clk = ∼ clk ;

time and realtime numbers :

− $time returns a 64-bit integer value for the simulation time

− $realtime returns a 64-bit real value for the simulation time

− only for simulation purposes



Boolean algebra, combinational circuits

Lab 2 - Fundamental logic gates in Verilog



NOT gate

Z = X

Verilog syntax :

// continuous assignment

assign Z = ∼ X ;

// primitive instantiation

not u1 (Z,X) ;



AND gate

Z = A ·B
Verilog syntax :

// continuous assignment

assign Z = A & B ;

// primitive instantiation

and u2 (Z,A,B) ;



OR gate

Z = A+B

Verilog syntax :

// continuous assignment

assign Z = A | B ;

// primitive instantiation

or u3 (Z,A,B) ;



NAND gate

Z = A ·B
Verilog syntax :

// continuous assignment

assign Z = ∼(A & B) ;

// primitive instantiation

nand u4 (Z,A,B) ;



NOR gate

Z = A+B

Verilog syntax :

// continuous assignment

assign Z = ∼(A | B) ;

// primitive instantiation

nor u5 (Z,A,B) ;



De Morgan’s theorem

A ·B = A+B

A+B = A ·B

Thanks to the De Morgan’s theorem NAND and NOR gates are promoted to universal
gates.



XOR gate

Z = A⊕B = (A ·B) + (A ·B)

Verilog syntax :

// continuous assignment

assign Z = A ^ B ;

// primitive instantiation

xor u6 (Z,A,B) ;



XNOR gate

Z = A⊕B = (A ·B) + (A ·B )

Verilog syntax :

// continuous assignment

assign Z = ∼(A ^ B) ;

// primitive instantiation

xnor u7 (Z,A,B) ;



Lab 3 - Different coding styles
for a simple 2:1 multiplexer



Lab 4 - Example combinational blocks


